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900.00  MODELABILITY 

900.01  Definition: Modelability 

 900.10  Modelability 

 900.11  Modelability is topologically conceptual in generalized principle 
independent of size and time: ergo, conceptual modelability is metaphysical. 

 900.12  Conceptual formulation is inherently empirical and as such is always 
special case sizing and always discloses all the physical characteristics of 
existence in time. 

 900.20  Synergetics 

 900.21  Synergetics is a book about models: humanly conceptual models; lucidly 
conceptual models; primitively simple models; rationally intertransforming 
models; and the primitively simple numbers uniquely and holistically identifying 
those models and their intertransformative, generalized and special case, number-
value accountings. 

 900.30  Model vs Form 

 900.31  Model is generalization; form is special case. 

 900.32  The brain in its coordination of the sensing of each special case 
experience apprehends forms. Forms are special case. Models are generalizations 
of interrelationships. Models are inherently systemic. Forms are special case 
systems. Mind can conceptualize models. Brains can apprehend forms. 

 900.33  Forms have size. Models are sizeless, representing conceptuality 
independent of size. 

901.00  Basic Disequilibrium LCD Triangle 



 901.01  Definition 

 901.02  The Basic Disequilibrium 120 LCD Spherical Triangle of synergetics is 
derived from the 15-great-circle, symmetric, three-way grid of the spherical 
icosahedron. It is the lowest common denominator of a sphere's surface, being 
precisely 1/120th of that surface as described by the icosahedron's 15 great circles. 
The trigonometric data for the Basic Disequilibrium LCD Triangle includes the 
data for the entire sphere and is the basis of all geodesic dome calculations. (See 
Sec.612.00.) 

Fig. 901.03 

Fig. 901.03 

901.03  As seen in Sec. 610.20 there are only three basic structural systems in 
Universe: the tetrahedron, octahedron, and icosahedron. The largest number of 
equilateral triangles in a sphere is 20: the spherical icosahedron. Each of those 20 
equiangular spherical triangles may be subdivided equally into six right triangles 
by the perpendicular bisectors of those equiangular triangles. The utmost number 
of geometrically similar subdivisions is 120 triangles, because further spherical-
triangular subdivisions are no longer similar. The largest number of similar 
triangles in a sphere that spheric unity will accommodate is 120: 60 positive and 
60 negative. Being spherical, they are positive and negative, having only common 
arc edges which, being curved, cannot hinge with one another; when their 
corresponding angle-and-edge patterns are vertex-mated, one bellies away from 
the other: concave or convex. When one is concave, the other is convex. (See 
Illus. 901.03 and drawings section.) 

 901.04  We cannot further subdivide the spherical icosahedron's equiangular 
triangles into similar, half-size, equiangular triangles, but we can in the planar 
icosahedron. When the sides of the triangle in the planar icosahedron are bisected, 
four similar half-size triangles result, and the process can be continued 
indefinitely. But in the spherical icosahedron, the smaller the triangle, the less the 
spherical excess; so the series of triangles will not be similar. Each corner of the 
icosahedron's equiangular triangles is 72 degrees; whereas the corners of its mid-
edge-connecting triangle are each approximately 63 degrees. 

 901.10  Geodesic Dome Calculations 
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Fig. 901.03 Basic Right Triangle of Geodesic Sphere: Shown here is the basic data for the 31 great 
circles of the spherical icosahedron, which is the basis for all geodesic dome calculations. The basic 
right triangle as the lowest common denominator of a sphere's surface includes all the data for the 
entire sphere. It is precisely 1/120th of the sphere's surface and is shown as shaded on the 31-great-
circle- sphere (A). An enlarged view of the same triangle is shown (B) with all of the basic data 
denoted. There are three different external edges and three different internal edges for a total of six 
different edges. There are six different internal angles other than 60º or 90º. Note that all data given is 
spherical data, i.e. edges are given as central angles and face angles are for spherical triangles. No 
chord factors are shown. Those not already indicated elsewhere are given by the equation 2 
sin(theta/2), where theta is the central angle. Solid lines denote the set of 15 great circles. Dashed lines 
denote the set of 10 great circles. Dotted lines denote the set of 6 great circles. 
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Fig. 901.03 The Basic Disequilibrium 120 LCD Triangle: 

12 vertexes surrounded by 10 converging angles 12×10=120

20 vertexes surrounded by 6 converging angles 20×6=120

30 vertexes surrounded by 4 converging angles 30×4=120
-----

360 converging
angles

The 360 convergent angles must share the 720° reduction from absolute sphere to 
chorded sphere: 720/360 = 2° per each corner; 6° per each triangle. 

All of the spherical excess 6° has been massaged by the irreducibility of the 90° and 60° 

corners into the littlest corner. .: 30 36. 

In reducing 120 spherical triangles described by the 15 great circles to planar faceted 
polyhedra, the spherical excess 6° would be shared proportionately by the 90°-60°-30° 
flat relationship = 3:2:1. 

The above tells us that freezing 60-degree center of the icosa triangle and sharing the 6-
degree spherical excess find A Quanta Module angles exactly congruent with the icosa's 
120 interior angles. 
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 901.11  When two great-circle geodesic lines cross, they form two sets of similar 
angles, any one of which, paired with the other, will always add to 180º. (This we 
also learned in plane geometry.) When any one great circle enters into__or exits 
from__a spherical triangle, it will form the two sets of similar angles as it crosses 
the enclosing great-circle-edge-lines of that triangle. 

 901.12  As in billiards or in electromagnetics, when a ball or a photon caroms off 
a wall it bounces off at an angle similar to that at which it impinged. 

 901.13  If a great-circle-describing, inexhaustibly re-energized, satellite ball that 
was sufficiently resilient to remain corporeally integral, were suddenly to 
encounter a vertical, great-circle wall just newly mounted from its parent planet's 
sphere, it would bounce inwardly off that wall at the same angle that it would 
have traversed the same great-circle line had the wall not been there. And had two 
other great-circle walls forming a right spherical triangle with the first wall been 
erected just as the resilient ball satellite was hitting the first great-circle wall, then 
the satellite ball would be trapped inside the spherical-triangle-walled enclosure, 
and it would bounce angularly off the successively encountered walls in the 
similar-triangle manner unless it became aimed either at a corner vertex of the 
triangular wall trap, or exactly perpendicularly to the wall, in either of which 
cases it would be able to escape into the next spherical area Lying 180º ahead 
outside the first triangle's walls. 

 901.14  If, before the satellite bouncingly earned either a vertexial or 
perpendicular exit from the first-described spherical triangle (which happened to 
be dimensioned as one of the 120 LCD right triangles of the spherical 
icosahedron) great-circle walls representing the icosahedron's 15 complete great 
circles, were erect__thus constructing a uniform, spherical, wall patterning of 120 
(60 positive, 60 negative) similar spherical, right triangles__we would find the 
satellite sphere bouncing around within one such spherical triangle at exactly the 
same interior or exiting angles as those at which it would have crossed, entered 
into, and exited, each of those great-circle boundaries of those 120 triangles had 
the wall not been so suddenly erected. 



 901.15  For this reason the great-circle interior mapping of the symmetrically 
superimposed other sets of 10 and 6 great circles, each of which__together with 
the 15 original great circles of the icosahedron__produces the 31 great circles of 
the spherical icosahedron's total number of symmetrical spinnabilities in respect 
to its 30 mid-edge, 20 mid-face, and 12 vertexial poles of half-as-many-each axes 
of spin. (See Sec. 457 .) These symmetrically superimposed, 10- and 6-great-
circles subdivide each of the disequilibrious 120 LCD triangles into four lesser 
right spherical triangles. The exact trigonometric patterning of any other great 
circles orbiting the 120-LCD-triangled sphere may thus be exactly plotted within 
any one of these triangles. 

 901.16  It was for this reason, plus the discovery of the fact that the 
icosahedron__among all the three-and-only prime structural systems of Universe 
(see Sec. 610.20) __required the least energetic, vectorial, structural investment 
per volume of enclosed local Universe, that led to the development of the Basic 
Disequilibrium 120 LCD Spherical Triangle and its multifrequenced triangular 
subdivisioning as the basis for calculating all highfrequency, triangulated, 
spherical structures and structural subportions of spheres; for within only one 
disequilibrious LCD triangle were to be found all the spherical chord-factor 
constants for any desired radius of omnisubtriangulated spherical structure. 

 901.17  In the same way it was discovered that local, chord-compression struts 
could be islanded from one another, and could be only tensionally and non-inter-
shearingly connected to produce stable and predictably efficient enclosures for 
any local energetic environment valving uses whatsoever by virtue of the 
approximately unlimited range of frequency-and-angle, subtriangle-structuring 
modulatability. 

 901.18  Because the 120 basic disequilibrious LCD triangles of the icosahedron 
have 2 l/2 times less spherical excess than do the 48 basic equilibrious LCD 
triangles of the vector equilibrium, and because all physical realizations are 
always disequilibrious, the Basic Disequilibrium 120 LCD Spherical Triangles 
become most realizably basic of all general systems' mathematical control 
matrixes. 
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 901.19  Omnirational Control Matrix: Commensurability of Vector 
Equilibrium and Icosahedron The great-circle subdivisioning of the 48 basic 
equilibrious LCD triangles of the vector equilibrium may be representationally 
drawn within the 120 basic disequilibrious LCD triangles of the icosahedron, thus 
defining all the aberrations__and their magnitudes__existing between the 
equilibrious and disequilibrious states, and providing an omnirational control 
matrix for all topological, trigonometric, physical, and chemical accounting. 

 902.00  Properties of Basic Triangle 

Fig. 902.01 

902.01  Subdivision of Equilateral Triangle: Both the spherical and planar 
equilateral triangles may be subdivided into six equal and congruent parts by 
describing perpendiculars from each vertex of the opposite face. This is 
demonstrated in Fig. 902.01, where one of the six equal triangles is labeled to 
correspond with the Basic Triangle in the planar condition. 

Fig. 902.10 

902.10  Positive and Negative Alternation: The six equal subdivision triangles 
of the planar equilateral triangle are hingeable on all of their adjacent lines and 
foldable into congruent overlays. Although they are all the same, their 
dispositions alternate in a positive and negative manner, either clockwise or 
counterclockwise. 

Fig. 902.20 

902.20  Spherical Right Triangles: The edges of all spherical triangles are arcs 
of great circles of a sphere, and those arc edges are measured in terms of their 
central angles (i.e., from the center of the sphere). But plane surface triangles 
have no inherent central angles, and their edges are measured in relative lengths 
of one of themselves or in special- case linear increments. Spherical triangles 
have three surface (corner) angles and three central (edge) angles. The basic data 
for the central angles provided below are accurate to 1/1,000 of a second of arc. 
On Earth 

1 nautical mile = 1 minute of arc

1 nautical mile = approximately 6,000 feet

1 second of arc = approximately 100 feet

1/l,000 second of arc = approximately 1/10 foot

1/1,000 second of arc = approximately 1 inch

These calculations are therefore accurate to one inch of Earth's arc. 



Fig. 902.01. 
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Fig. 902.10. 
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Fig. 902.20. 
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 902.21  The arc edges of the Basic Disequilibrium 120 LCD Triangle as 
measured by their central angles add up to 90° as do also three internal surface 
angles of the triangle's ACB corner: 

BCE = 20° 54' 18.57" = ECF

ECD = 37° 22' 38.53" = DCE

DCA = 31° 43' 02.9"
--------------- 

= ACD 

90° 00' 00"

 902.22  The spherical surface angle BCE is exactly equal to two of the arc edges 
of the Basic Disequilibrium 120 LCD Triangle measured by their central angle. 
BCE = arc AC = arc CF = 20° 54' 18.57". 

Fig. 902.30 

902.30  Surface Angles and Central Angles: The Basic Triangle ACB can be 
folded on the lines CD and CE and EF. We may then bring AC to coincide with 
CF and fold BEF down to close the tetrahedron, with B congruent with D because 
the arc DE = arc EB and arc BF = arc AD. Then the tetrahedron's corner C will fit 
exactly down into the central angles AOC, COB, and AOB. (See Illus. 901.03 and 
902.30.) 

 902.31  As you go from one sphere-foldable great-circle set to another in the 
hierarchy of spinnable symmetries (the 3-, 4-, 6-, 12-sets of the vector 
equilibrium's 25- great-circle group and the 6-, 10-, 15-sets of the icosahedron's 
31-great-circle group), the central angles of one often become the surface angles 
of the next-higher-numbered, more complex, great-circle set while simultaneously 
some (but not all) of the surface angles become the respective next sphere's 
central angles. A triangle on the surface of the icosahedron folds itself up, 
becomes a tetrahedron, and plunges deeply down into the congruent central 
angles' void of the icosahedron (see Sec. 905.47 ). 

 902.32  There is only one noncongruence- the last would-be hinge, EF is an 
external arc and cannot fold as a straight line; and the spherical surface angle EBF 
is 36 degrees whereas a planar 30 degrees is called for if the surface is cast off or 
the arc subsides chordally to fit the 90-60-30 right plane triangle. 



Fig. 902.30. 
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 902.33  The 6 degrees of spherical excess is a beautiful whole, rational number 
excess. The 90-degree and 60-degree corners seem to force all the excess into one 
corner, which is not the way spherical triangles subside. All the angles lose excess 
in proportion to their interfunctional values. This particular condition means that 
the 90 degrees would shrink and the 60 degrees would shrink. I converted all the 
three corners into seconds and began a proportional decrease study, and it was 
there that I began to encounter a ratio that seemed rational and had the number 31 
in one corner. This seemed valid as all the conditions were adding up to 180 
degrees or 90 degrees as rational wholes even in both spherical and planar 
conditions despite certain complementary transformations. This led to the intuitive 
identification of the Basic Disequilibrium 120 LCD Triangle's foldability (and its 
fall-in-ability into its own tetra-void) with the A Quanta Module, as discussed in 
Sec. 910 which follows. 

Next Section: 905.00 
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905.00  Equilibrium and Disequilibrium Modelability 

 905.01  Tetrahedron as Model: Synergetics is the geometry of thinking. How 
we think is epistemology, and epistemology is modelable; which is to say that 
knowledge organizes itself geometrically, i.e., with models. 

Fig. 905.02 

905.02  Unity as two is inherent in life and the resulting model is tetrahedral, the 
conceptuality of which derives as follows: 

__ life's inherent unity is two;

__ no otherness = no awareness;

__ life's awareness begins with otherness;

__ otherness is twoness;

__ this moment's awareness is different from previous awareness;

__ differentiations of time are observed directionally;

__ directions introduce vectors (lines);

__ two time lines demonstrate the observer and the observed;

__ the interconnection of two lines results in a tetrahedron;

__ sixfold interrelatedness is conceptual:

 905.10  Doubleness of Unity 

 905.11  The prime number twoness of the octahedron always occurs in 
structuring doubled together as four__i.e., 22 __a fourness which is also doubleness 
of unity. Unity is plural and, at minimum, is two. The unity volume 1 of the 
tetrahedron is, in structural verity, two, being both the outwardly displayed 
convex tetrahedron and the inwardly contained concave tetrahedron. (See Chart 
223.64 , columns 2, 12, and 15) 

 905.12  The three-great-circle model of the spherical octahedron only "seems" to 
be three; it is in fact "double"; it is only foldably produceable in unbroken (whole) 
great-circle sheets by edge-combining six hemicircularly folded whole great 
circles (see Sec. 840 ). Thus it is seen that the octahedron__as in Iceland spar 

crystals__occurs only doubly, i.e., omnicongruent with itself, which is 
"quadrivalent." 
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Fig. 905.02. 
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 905.13  Among the three possible omnisymmetrical prime structural 
systems__the tetrahedron, octahedron, and icosahedron__only the tetrahedron has 
each of its vertexes diametrically opposite a triangular opening. (See Illus. 610.2.) 
In the octahedron and icosahedron, each vertex is opposite another vertex; and 
each of their vertexes is diametrically blocked against articulating a self-inside-
outing transformation. In both the octahedron and the icosahedron, each of the 
vertexes is tense-vector-restrained from escaping outwardly by the convergent 
vectorial strength of the system's other immediately surrounding__at minimum 
three__vertexial event neighbors. But contrariwise, each of the octahedron's and 
icosahedron's vertex events are constrainingly impulsed inwardly in an exact 
central-system direction and thence impelled toward diametric exit and inside-
outing transformation; and their vertex events would do so were it not for their 
diametrically opposed vertexes, which are surroundingly tense-vector-restrained 
from permitting such outward egress. 

 905.14  As a consequence of its uniquely unopposed diametric vertexing__ergo 
permitted__diametric exit, only the tetrahedron among all the symmetric 
polyhedra can turn itself pulsatingly inside-out, and can do so in eight different 
ways (see Sec. 624 ); and in each instance, as it does so, one-half of its combined 
concave-convex unity "twoness" is always inherently invisible. 

 905.15  The octahedron, however, restrainingly vector-blocked as described, can 
only infold itself pulsatingly to a condition of hemispherical congruence like a 
deflated basketball. Thus the octahedron's concave-convex, unity-twoness state 
remains plurally obvious. You can see the concave infolded hemisphere nested 
into the as-yet outfolded convex hemisphere. Verifying the octahedron's fourness 
as being an evolutionary transformation of the tetrahedron's unity-twoness, we 
may take the four triangles of the tetrahedron which were edge-hinged together 
(bivalently) and reassemble them univalently (that is, corner-to-corner) and 
produce the octahedron, four of whose faces are triangular (ergo structurally 
stable) voids. This, incidentally, introduces the structural stability of the triangle 
as a visualizable yet physical nothingness. 

 905.16  The triangle is structure. Structure is spontaneous pattern stabilization of 
a complex of six individual events. Structure is an integral of six events. Structure 
is a pattern integrity. Pattern integrity is conceptual relationship independent of 
size. The integrity of the nuclear structuring of the atoms is conceptually 
thinkable, as are the associability and disassociability proclivities of chemistry, 
virology, biology, and all nonbiological structuring and mechanics. 
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 905.17  Any and all of the icosahedron's vertexes pulsate individually and 
independently from the convex to concave state only in the form of local 
dimpling, because each only-from-outward-motion-restrained vertex__being free 
to articulate inwardly toward its system center, and having done so__becomes 
abruptly five-vector- restrained by its immediate neighboring vertexial event 
convergences; and the abrupt halting of its inward travel occurs before it reaches 
the system center. This means that one vertex cannot pulse inwardly more deeply 
than a local dimple similar to the popping in of a derby hat. (See Sec. 618.30 .) 

 905.18  Both the coexisting concave and convex aspects of the icosahedron__like 
those of the octahedron, but unlike those of the unique case of the 
tetrahedron__are always visually obvious on the inside and outside of the only 
locally dimpled-in, or nested- in, vertex. In both the octahedron and the 
icosahedron, the concave-convex, only inwardly pulsative self-transforming 
always produces visually asymmetrical transforming; whereas the tetrahedron's 
permitted inside-outing pulsatively results only in a visible symmetry, the 
quasiasymmetry being invisibly polarized with the remainder of Universe outside 
the tetrahedron, which, being omniradially outward, is inferentially__but not 
visually__symmetrical; the only asymmetrical consideration of the tetrahedron's 
inside- outing being that of an initial direction of vertexial exiting. Once exited, 
the visible remaining symmetrical tetrahedron is in verity the inside-outness of its 
previously visible aspects. (See Sec. 232.01 .) 

 905.19  In either of the two sets of four each as alternatively described, one of the 
polar states is always visible and the other complementarily invisible. This is a 
dynamic relationship. Dynamically, all four of each of the two sets of the 
tetrahedral potential are co-occurrently permitted and are required by omni-action-
reaction-resultant synergetics. The seeming significance of the separately 
considered asymmetries are cancelled by the omnidirectional symmetry. 

 905.20  The vertexes are the unique, individual, ergo in-time events; and the 
nonvertex voids are the outdividual, ergo out, timeless, sizeless nonevents. The 
both outwardly and inwardly escaping nonevents complement the embryo, local-
in-time, special-case, convergent-event, systemic pattern fixation of individual 
intercomplementary event identities. (See Sec. 524 .) 
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 905.21  In is unidirectional, pointable. Out is omnidirectional, unpointable__go 
out, to-go-out, or go-in-to-go-out on the other side. Any direction from here is 
out; only one direction from here is in. Go either temporarily in to go 
diametrically out on the other side of the individually identical local in, or go 
anydirectionally out . . . to the complete, eternal, unidentifiable, nonness, 
noneness of the a priori mysterious, integrally regenerative, inherently complex 
Universe. 

 905.22  So-called edges and vectors are inherently only convergent or divergent 
interrelationships between multiply-identifiable, point-to-able, vertex fixes. 

 905.23  Because each tetrahedron has both four vertexes and four subtending 
nonvertex voids, we can identify those four diametrically complementary sets of 
all minimal cosmic structural systems as the four visible vertexes and the four 
nonvisible nonvertexes, i.e., the triangularly symmetrical, peripheral voids. The 
tetrahedron thus introduces experientially the cosmic principle of the visible and 
invisible pairs or couples; with the nonvisible vertex as the inside-out vertex, 
which nonvertex is a nonconvergence of events; whereas the vertexes are visible 
event convergences. 

 905.30  Hierarchy of Pulsating Tetrahedral Arrays 

 905.31  Among the exclusively, three and only, prime cosmic structural 
systems__the tetra, octa, and icosa__only the tetrahedron's pulsative transforming 
does not alter its overall, visually witnessable symmetry, as in the case of the 
"cheese tetrahedron" (see Sec. 623.00). It is important to comprehend that any one 
of the two sets of four each potential vertexial inside-outing pulsatabilities of the 
tetrahedron__considered only by themselves__constitutes polarized, but only 
invisible, asymmetry. In one of the two sets of four each potential inside-outings 
we have three-of-each-to-three-of-the-other (i.e., trivalent, triangular, base-to-
base) vertexial bonding together of the visible and invisible, polarized pair of 
tetrahedra. In the other of the two sets of four each potential inside- outings we 
have one-vertex-to-one-vertex (i.e., univalent, apex-to-apex) interbonding of the 
visible and invisible polarized pair of tetrahedra. 
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 905.32  Because each simplest, ergo prime, structural system tetrahedron has at 
minimum four vertexes (point-to-able, systemic, event-patterned fixes), and their 
four complementary system exit-outs, are symmetrically identified at mid-void 
equidistance between the three other convergent event identity vertexes; and 
because each of the two sets of these four half-visible/half-invisible, polar-paired 
tetrahedra have both three-vertex- to-three-vertex as well as single-vertex-to-
single-vertex inside-out pulsatabilities; there are eight possible inside-outing 
pulsatabilities. We have learned (see Sec. 440 ) that the vector equilibrium is the 
nuclear-embracing phase of all eight "empty state" tetrahedra, all with common, 
central, single-vertex-to-single-vertex congruency, as well as with their mutual 
outward-radius-ends' vertexial congruency; ergo the vector equilibrium is 
bivalent. 

 905.33  The same vector equilibrium's eight, nuclear-embracing, bivalent 
tetrahedra's eight nuclear congruent vertexes may be simultaneously outwardly 
pulsed through their radially-opposite, outward, triangular exits to form eight 
externally pointing tetrahedra, which thus become only univalently, i.e., only-
single-vertex interlinked, and altogether symmetrically arrayed around the vector 
equilibrium's eight outward "faces." The thus formed, eight-pointed star system 
consisting of the vector equilibrium's volume of 20 (tetrahedral unity), plus the 
eight star-point-arrayed tetrahedra, total volumetrically to 28. This number, 28, 
introduces the prime number seven factored exclusively with the prime number 
two, as already discovered in the unity-twoness of the tetrahedron's always and 
only, co-occurring, concave-convex inherently disparate, behavioral duality. This 
phenomenon may be compared with the 28-ness in the Coupler accounting (see 
Sec. 954.72). 

 905.34  We have also learned in the vector equilibrium jitterbugging that the 
vector equilibrium contracts symmetrically into the octahedral state, and we thus 
witness in the octahedron the eight tetrahedra__three-vertex-to-three-vertex (face-
to-face, trivalent, triple-interbonded)__which condition elucidates the octahedron's 
having a volumetric four in respect to the tetrahedron's dual unity. Whereas the 
octahedron's prime number is two in respect to the tetrahedron's prime number 
one, it is experientially evidenced that the octahedron always occurs as both the 
double phase and the fourfold phase of the tetrahedron; i.e., as (a) the tetrahedral 
invisible/visible, (No-Yes), concave/convex; as well as (b) the octahedral 
visible/visible, (Yes-Yes), concave/convex: two different twoness manifestations. 
The tetrahedron has a unity-two duality in both its generalized dynamic potential 
and kinetic states, having always both the cosmic macro-tetrahedron and the 
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cosmic micro-tetrahedron, both embracingly and inclusively defined by the four 
convergent event fixes of the minimum structural system of Universe. There is 
also the fundamental twoness of the tetrahedron's three sets of two-each, opposed, 
90-degree- oriented edgevectors whose respective four ends are always most 
economically omni- interconnected by the four other vectors of the tetrahedron's 
total of six edge-vectors. 

 905.35  The jitterbug shows that the bivalent vector equilibrium contracts to the 
octahedral trivalent phase, going from a twentyness of volume to a fourness of 

volume, 20 4, i.e., a 5:1 contraction, which introduces the prime number five 
into the exclusively tetrahedrally evolved prime structural system 
intertransformabilities. We also witness that the octahedron state of the jitterbug 
transforms contractively even further with the 60- degree rotation of one of its 
triangular faces in respect to its nonrotating opposite triangular face__wherewith 
the octahedron collapses into one, flattened-out, two-vector- length, equiedged 
triangle, which in turn consists of four one-vector-edged, equiangled triangles, 
each of which in turn consists of two congruent, one-vector-long, equiedged 
triangles. All eight triangles lie together as two congruent sets of four small, one-
vector- long, equiedged triangles. This centrally congruent axial force in turn 
plunges the two centrally congruent triangles through the inertia of the three sets 
of two congruent, edge- hinged triangles on the three sides of the congruent pair 
of central triangles which fold the big triangle's corners around the central triangle 
in the manner of the three petals folding into edge congruence with one another to 
produce a tetrahedrally shaped flower bud. Thus is produced one tetrahedron 
consisting of four quadrivalently congruent tetrahedra, with each of its six edges 
consisting of four congruent vectors. The tetrahedron thus formed, pulsatively 
reacts by turning itself inside-out to produce, in turn, another quadrivalent, four-
tetrahedra congruence; which visible-to-visible, quadrivalent tetrahedral inside-
outing/outside-inning is pulsatively regenerative. (See Illus. 461.08.) 

 905.36  Herewith we witness both visible and heretofore invisible phases of each 
of the single tetrahedra thus pulsatively involved. The univalent, apex-to-apex-
bonded, four tetrahedra and the three-point-to-three-point, trivalent, base-bonded, 
four tetrahedra are both now made visible, because what was visible to the point-
to-point four was invisible to the three-point-to-three-point four, and vice versa. 
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 905.37  In the two extreme limit cases of jitterbug contraction__both the positive- 
negative and the negative-positive phases__the two cases become alternately 
visible, which results in the invisible phase of either case becoming congruent 
with the other's invisible phase: ergo rendering both states visible. 

 905.38  This pulsating congruence of both the alternately quadrivalent visible 
phases of the limit case contractions of the vector equilibrium results in an 
octavalent tetrahedron; i.e., with all the tetrahedron's eight pulsative 
intertransformabilities simultaneously realized and congruently oriented. 

 905.39  This hierarchy of events represents a 28-fold volumetric contraction from 
the extreme limit of univalently coherent expandability of the ever-integrally-unit 
system of the eight potential pulsative phases of self-intertransformability of the 
tetrahedron as the minimum structural system of all Universe. In summary we 
have: 

__the 28-volume univalent;
__the 20-volume bivalent;
__the 8-volume quadrivalent;
__the two sets of 1-volume quadrivalent; and finally,
__the complex limit congruence of the 1-volume octavalent tetrahedron.

 905.40  As we jitterbuggingly transform contractively and symmetrically from 
the 20-volume bivalent vector equilibrium phase to the 8-volume quadrivalent 
octahedral phase, we pass through the icosahedral phase, which is 
nonselfstabilizing and may be stabilized only by the insertion of six additional 
external vector connectors between the 12 external vertexes of the vector 
equilibrium travelling toward convergence as the six vertexes of the trivalent 4-
volume octahedron. These six vectors represent the edge- vectors of one 
tetrahedron. 



 905.41  The 28-volume, univalent, nucleus-embracing, tetrahedral array extends 
its outer vertexes beyond the bounds of the nucleus-embracing, closest-packed, 
omnisymmetrical domain of the 24-volume cube formed by superimposing eight 
Eighth- Octahedra, asymmetrical, equiangle-based, three-convergent-90-degree-
angle-apexed tetrahedra upon the eight outward equiangular triangle facets of the 
vector equilibrium. We find that the 28-ness of free-space expandability of the 
univalent, octahedral, nucleus embracement must lose a volume of 4 (i.e., four 
tetrahedra) when subjected to omniclosest-packing conditions. This means that the 
dynamic potential of omniinterconnected tetrahedral pulsation system's 
volumetric embracement capability of 28, upon being subjected to closest-packed 
domain conditions, will release an elsewhere- structurally-investable volume of 4. 
Ergo, under closest-packed conditions, each nuclear array of tetrahedra (each of 
which is identifiable energetically with one energy quantum) may lend out four 
quanta of energy for whatever tasks may employ them. 

 905.42  The dynamic vs. kinetic difference is the same difference as that of the 
generalized, sizeless, metaphysically abstract, eternal, constant sixness-of-edge, 
foumess- of-vertex, and fourness-of-void of the only-by-mind-conceptual 
tetrahedron vs. the only- in-time-sized, special-case, brain-sensed tetrahedron. 
This generalized quality of being dynamic, as being one of a plurality of inherent 
systemic conditions and potentials, parts of a whole set of eternally co-occurring, 
complex interaccommodations in pure, weightless, mathematical principle 
spontaneously producing the minimum structural systems, is indeed the prime 
governing epistemology of wave quantum physics. 

 905.43  In consideration of the tetrahedron's quantum intertransformabilities, we 
have thus far observed only the expandable-contractable, variable-bonding-
permitted consequences. We will now consider other dynamical potentials, such 
as, for instance, the axial rotatabilities of the respective tetras, octas, and icosas. 



 905.44  By internally interconnecting its six vertexes with three polar axes: X, Y, 
and Z, and rotating the octahedron successively upon those three axes, three 
planes are internally generated that symmetrically subdivide the octahedron into 
eight uniformly equal, equiangle-triangle-based, asymmetrical tetrahedra, with 
three convergent, 90- degree-angle-surrounded apexes, each of whose volume is 
one-eighth of the volume of one octahedron: this is called the Eighth-Octahedron. 
(See also Sec. 912.) The octahedron, having a volume of four tetrahedra, allows 
each Eighth-Octahedron to have a volume of one-half of one tetrahedron. If we 
apply the equiangled-triangular base of one each of these eight Eighth-Octahedra 
to each of the vector equilibrium's eight equiangle- triangle facets, with the Eighth-
Octahedra's three-90-degree-angle-surrounded vertexes pointing outwardly, they 
will exactly and symmetrically produce the 24-volume, nucleus- embracing cube 
symmetrically surrounding the 20-volume vector equilibrium; thus with 8 × 1/2 = 
4 being added to the 20-volume vector equilibrium producing a 24-volume total. 

 905.45  A non-nucleus-embracing 3-volume cube may be produced by applying 
four of the Eighth-Octahedra to the four equiangled triangular facets of the 
tetrahedron. (See Illus. 950.30.) Thus we find the tetrahedral evolvement of the 

prime number three as identified with the cube. Ergo all the prime numbers__1, 2, 
3, 5, 7__of the octave wave enumeration system, with its zero-nineness, are now 
clearly demonstrated as evolutionarily consequent upon tetrahedral 
intertransformabilities. 

 905.46  Since the tetrahedron becomes systematically subdivided into 24 
uniformly dimensioned A Quanta Modules (one half of which are positive and the 
other half of which are negatively inside-out of the other); and since both the 
positive and negative A Quanta Modules may be folded from one whole triangle; 
and since, as will be shown in Sec. 905.62 the flattened-out triangle of the A 
Quanta Module corresponds with each of the 120 disequilibrious LCD triangles, it 
is evidenced that five tetrahedra of 24 A Quanta Modules each, may have their 
sum-total of 120 A Modules all unfolded, and that they may be edge-bonded to 
produce an icosahedral spherical array; and that 2 1/2 tetrahedra's 60 A Quanta 
Modules could be unfolded and univalently (single-bondedly) arrayed to produce 
the same spheric icosahedral polyhedron with 60 visible triangles and 60 invisible 
triangular voids of identical dimension. 



 905.47  Conversely, 60 positive and 60 negative A Quanta Modules could be 
folded from the 120 A Module triangles and, with their "sharpest" point pointed 
inward, could be admitted radially into the 60-positive-60-negative tetrahedral 
voids of the icosahedron. Thus we discover that the icosahedron, consisting of 120 
A Quanta Modules (each of which is 1/24th of a tetrahedron) has a volume of 
120/24 = 5 The icosahedron volume is 5 when the tetrahedron is 1; the octahedron 
22 ; the cube 3; and the star-pointed, univalent, eight-tetrahedra nuclear 
embracement is 28, which is 4 × 7; 28 also being the maximum number of 
interrelationships of eight entities: 

N2 - N
-----------

2
=

82 - 8
-----------

2
= 28 

 905.48  The three surrounding angles of the interior sharpest point of the A 
Quanta Module tetrahedron are each a fraction less than the three corresponding 
central angles of the icosahedron: being approximately one-half of a degree in the 
first case; one whole degree in the second case; and one and three-quarters of a 
degree in the third case. This loose-fit, volumetric-debit differential of the A 
Quanta Module volume is offset by its being slightly longer in radius than that of 
the icosahedron, the A Module's radial depth being that of the vector 
equilibrium's, which is greater than that of the icosahedron, as caused by the 
reduction in the radius of the 12 balls closest-packed around one nuclear ball of 
the vector equilibrium (which is eliminated from within the same closest-radially- 
packed 12 balls to reduce them to closest surface-packing, as well as by 
eliminating the nuclear ball and thereby mildly reducing the system radius). The 
plus volume of the fractionally protruded portion of the A Quanta Module beyond 
the icosahedron's surface may exactly equal the interior minus volume difference. 
The balancing out of the small plus and minus volumes is suggested as a 
possibility in view of the exact congruence of 15 of the 120 spherical icosahedra 
triangles with each of the spherical octahedron's eight spherical equiangle faces, 
as well as by the exact congruence of the octahedron and the vector equilibrium 
themselves. As the icosahedron's radius shortens, the central angles become 
enlarged. 



 905.49  This completes the polyhedral progression of the omni-phase-bond- 
integrated hierarchies of__1-2-3-4, 8__symmetrically expanded and symmetrically 
subdivided tetrahedra; from the 1/24th-tetrahedron (12 positive and 12 negative A 
Quanta Modules); through its octavalent 8-in-1 superficial volume-1; expanded 
progressively through the quadrivalent tetrahedron; to the quadrivalent 
octahedron; to the bivalent vector equilibrium; to the univalent, 28-volume, 
radiant, symmetrical, nucleus-embracing stage; and thence exploded through the 
volumeless, flatout-outfolded, double-bonded (edge-bonded), 120-A-Quanta-
Module-triangular array remotely and symmetrically surrounding the nuclear 
volumetric group; to final dichotomizing into two such flatout half (positive 
triangular) film and half (negative triangular) void arrays, single-bonded (corner- 
bonded), icosahedrally shaped, symmetrically nuclear-surrounding systems. 

 905.50  Rotatability and Split Personality of Tetrahedron 

 905.51  Having completed the expansive-contractive, could-be, quantum jumps, 
we will now consider the rotatability of the tetrahedron's six-edge axes generation 
of both the two spherical tetrahedra and the spherical cube whose "split 
personality's" four-triangle- defining edges also perpendicularly bisect all of both 
of the spherical tetrahedron's four equiangled, equiedged triangles in a three-way 
grid, which converts each of the four equiangled triangles into six right-angle 
spherical triangles__for a total of 24, which are split again by the spherical 
octahedron's three great circles to produce 48 spherical triangles, which constitute 
the 48 equilibrious LCD Basic Triangles of omniequilibrious eventless eternity 
(see Sec. 453). 

 905.52  The spherical octahedron's eight faces become skew-subdivided by the 
icosahedron's 15 great circles' self-splitting of its 20 equiangular faces into six-
each, right spherical triangles, for an LCD spherical triangle total of 120, of which 
15 such right triangles occupy each of the spherical octahedron's eight equiangular 
faces__for a total of 120__which are the same 120 as the icosahedron's 15 great 
circles. 

 905.53  The disequilibrious 120 LCD triangle = the equilibrious 48 LCD triangle 
× 2½. This 2½ + 2½ = 5; which represents the icosahedron's basic fiveness as split- 
generated into 2½ by their perpendicular, mid-edge-bisecting 15 great circles. 
Recalling the six edge vectors of the tetrahedron as one quantum, we note that 6 + 
6 + 6/2 is 1 + 1 + 1/2 = 2½ ; and that 2½ × 6 = 15 great circles. (This half-positive 
and half negative dichotomization of systems is discussed further at Sec. 
1053.30ff.) 
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 905.54  We find that the split personality of the icosahedron's 15-great-circle 
splittings of its own 20 triangles into 120, discloses a basic asymmetry caused by 
the incompleteness of the 2½, where it is to be seen in the superimposition of the 
spherical icosahedron upon the spherical vector equilibrium. In this arrangement 
the fundamental prime number fiveness of the icosahedron is always split two 
ways: 2½ positive phase and 2½ negative phase. This half-fiving induces an 
alternate combining of the half quantum on one side or the other: going to first 
three on one side and two on the other, and vice versa. 

 905.55  This half-one-side/half-on-the-other induces an oscillatory alternating 
120- degree-arc, partial rotation of eight of the spherical tetrahedron's 20 
equiangled triangles within the spherical octahedron's eight triangles: 8 × 2½ = 
20. We also recall that the vector equilibrium has 24 internal radii (doubled 
together as 12 radii by the congruence of the four-great-circle's hexagonal radii) 
and 24 separate internal vector chords. These 24 external vector chords represent 
four quanta of six vectors each. When the vector equilibrium jitterbuggingly 
contracts toward the octahedral edge-vector doubling stage, it passes through the 
unstable icosahedral stage, which is unstable because it requires six more edge-
vectors to hold fixed the short diagonal of the six diamond-shaped openings 
between the eight triangles. These six equilength vectors necessary to stabilize the 
icosahedron constitute one additional quantum which, when provided, adds 1 to 
the 4 of the vector equilibrium to equal 5, the basic quantum number of the 
icosahedron. 

 905.60  The Disequilibrium 120 LCD Triangle 

 905.61  The icosahedral spherical great-circle system displays:
12 vertexes surrounded by 10 converging angles;
20 vertexes surrounded by 6 converging angles;
30 vertexes surrounded by 4 converging angles 

12 × 10 = 120

20 × 6 = 120

30 × 4 =
120
------

360 converging angle sinuses.



 905.62  According to the Principle of Angular Topology (see Sec. 224 ), the 360 
converging angle sinuses must share a 720-degree reduction from an absolute 
sphere to a chorded sphere: 720°/360° = 2°. An average of 2 degrees angular 
reduction for each comer means a 6 degrees angular reduction for each triangle. 
Therefore, as we see in each of the icosahedron's disequilibrious 120 LCD 
triangles, the well-known architects and engineers' 30°-60°-90° triangle has been 
spherically opened to 36°-60°-90° __a "spherical excess," as the Geodetic Survey 
calls it, of 6 degrees. All this spherical excess of 6 degrees has been massaged by 
the irreducibility of the 90-degree and 60-degree corners into the littlest corner. 

Therefore, 30 36 in each of the spherical icosahedron's 120 surface triangles. 

 905.63  In subsiding the 120 spherical triangles generated by the 15 great circles 
of the icosahedron from an omnispherical condition to a neospheric 120-planar-
faceted polyhedron, we produce a condition where all the vertexes are equidistant 
from the same center and all of the edges are chords of the same spherical 
triangle, each edge having been shrunk from its previous arc length to the chord 
lengths without changing the central angles. In this condition the spherical excess 
of 6 degrees could be shared proportionately by the 90°, 60°, 30° flat triangle 
relationship which factors exactly to 3:2:1. Since 6° = 1/30 of 180° , the 30 quanta 
of six each in flatout triangles or in the 120 LCD spherical triangles' 186 degrees, 
means one additional quantum crowded in, producing 31 quanta. 

 905.64  Alternatively, the spherical excess of 6 degrees (one quantum) may be 
apportioned totally to the biggest and littlest corners of the triangle, leaving the 60-
degree, vector equilibrium, neutral corner undisturbed. As we have discovered in 
the isotropic vector matrix nature coordinates crystallographically in 60 degrees 
and not in 90 degrees. Sixty degrees is the vector equilibrium neutral angle 
relative to which life-in-time aberrates. 

Flatout A Quanta Basic Draftsman's

Module Triangle1 Triangle (Flat)

35° 16' (minus 5° 16') = 30° 00'

60° 00' (unchanged) = 60° 00' 

84° 44'
----------

(plus 5° 16') =
90° 00'
---------- 

180° 00' 180° 00'
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Table 905.65 

905.65  By freezing the 60-degree center of the icosahedral triangle, and by 
sharing the 6-degree, spherical-planar, excess reduction between the 36-degree 
and 90-degree corners, we will find that the A Quanta Modules are exactly 
congruent with the 120 internal angles of the icosahedron. The minus 5° 16' 
closely approximates the one quantum 6 + of spherical excess apparent at the 
surface, with a comparable nuclear deficiency of 5° 16'. (See Table 905.65.) 

 905.66  The Earth crust-fault angles, steel plate fractionation angles, and ship's 
bow waves all are roughly the same, reading approximately 70-degree and 110-
degree complementation. 

 Dihedral angle of octahedron = 109° 28'= 2 × 54° 44' 

Dihedral angle of tetrahedron =
70° 32'
---------

180° 00'

 54° 44' 60° 00' 5° 16' 70° 32'

+ 54° 44'
---------

- 54° 44'
--------- 

× 2
---------

- 60° 00'
---------

109° 28' 5° 16' 10° 32' 10° 32' 

 __ If 5° 16' = unity; 54° 44' = 60°-1 quantum; and 70° 32' = 60° + 2 quanta.
__ Obviously, the 70° 32' and 109° 28' relate to the "twinkle angle" differential 

from 60° (cosmic neutral) and to the 109° 28' central angle of the spherical 
tetrahedron. (See also Sec. 1051.20.) 

Next Section: 905.70 
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Table 905.65 

Central Angles

Decimal Magnitudes Angles around of the Spherical Decimal Magnitudes

of VE 10-ness Sharp Vertex of Icosahedron's of VE 10-ness

(Equil.)+Icosa A Quanta Module Disequilibrium 120 (Equil.)+Icosa

5-ness (Disequil.) Tetrahedron Differential LCD Triangles Differential 5-ness (Disequil.)

20° 19° 28' 26' 18.5" 20° 54' 18.57" -00° 54' 18.57" 20°

30° 30° 1° 43' 02.9" 31° 43' 02.9" - 1° 43' 02.9" 30°

------------------

-2° 37' 21.47"

40° 35° 16' 1° 06' 38.53" 37° 22' 38.53" + 2° 37' 21.47" 40°

--- --------- ------------------- ------------------- ------------------- --------

90° 84° 44' + 5° 16' = 90° 00' 00.00" 5° 14' 43.34" 90°

This 5° 16' is one This 2° 37' 21.47" is

whole quantum-44' one quantum split in two

(There is a basic difference between 5° 16' and approx. 5° 15'. It is obviously the same "twinkle angle" with residual calculation error of trigonometric irrational inexactitude.) 
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 905.70  Summary: Wave Propagation Model 

 905.71  Both in the spherical vector equilibrium and in the disequilibrious 
icosahedral spherical system, the prime number five is produced by the 
fundamental allspace-filling complementarity of the l-volume tetrahedron and the 
4-volume octahedron. 

__ Symmetrical: 1 + 4 = 5

__ Asymmetrical: 4 + 1 = 5

The effect is symmetrical when the tetrahedron's four vertexes simultaneously 
pulse outwardly through their opposite void triangles to produce the "star 
tetrahedron," one outwardly-pointing tetrahedron superimposed on each of the 
four faces of a nuclear tetrahedron: i.e., 1 + 4 = 5. The effect is asymmetrical 
when one outwardly-pointing tetrahedron is superimposed on one face of one 
octahedron: i.e., 4 + 1 = 5. 

 905.72  We now understand how the equilibrious 48 basic triangles transform 
into the 120 disequilibrious basic triangles. The 120 (60 positive and 60 negative) 
LCD spherical triangles' central (or nuclear) angles are unaltered as we transform 
their eternal systemic patterning symmetry from (a) the octahedral form of 
l20/8=15 A Quanta Modules per each octa triangle; to (b) the icosahedron's 
120/20 = 6 A Quanta Modules per each icosa triangle; to (c) the dodecahedron's 
l20/l2 = 10 A Quanta Modules per each pentagon. This transformational 
progression demonstrates the experientially witnessable, wave-producing surface-
askewing caused by the 120-degree, alternating rotation of the icosahedron's 
triangles inside of the octahedron's triangles. Concomitant with this alternating 
rotation we witness the shuttling of the spherical vector equilibrium's 12 vertexial 
positions in a successive shifting-back-and-forth between the spherical 
icosahedron's 12 vertexial positions; as well as the wave-propagating symmetrical, 
polyhedral alterations of the inward-outward pulsations which generate surface 
undulations consequent to the radial contractions, at any one time, of only a 
fractional number of all the exterior vertexes, while a symmetrical set of vertexes 
remains unaltered. 

 905.73  This elucidates the fundamental, electromagnetic, inward-outward, and 
complex great-circling-around type of wave propagation, as does also the model 
of spheres becoming voids and all the voids becoming spheres, and their 
omniradiant wave propagation (see Sec. 1032). 
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 905.74  There are also the approximately unlimited ranges of frequency 
modulatabilities occasioned by the symmetrical subdivisioning of all the prime, 
equiangled, surface triangles of the tetrahedron, octahedron, and icosahedron. 
This additionally permitted wave undulation of surface pattern shifting is directly 
identified with the appearance of photons as spherically clustered and radiantly 
emittable tetrahedra (see Sec. 541.30). 

910.00  A and B Quanta Modules 

 910.01  All omni-closest-packed, complex, structural phenomena are 
omnisymmetrically componented only by tetrahedra and octahedra. Icosahedra, 
though symmetrical in themselves, will not close-pack with one another or with 
any other symmetrical polyhedra; icosahedra will, however, face-bond together to 
form open- network octahedra. 

 910.02  In an isotropic vector matrix, it will be discovered that there are only two 
omnisymmetrical polyhedra universally described by the configuration of the 
interacting vector lines: these two polyhedra are the regular tetrahedron and the 
regular octahedron. 

 910.10  Rational Fraction Elements 

 910.11  All other regular, omnisymmetric, uniform-edged, -angled, and -faceted, 
as well as several semisymmetric, and all other asymmetric polyhedra other than 
the icosahedron and the pentagonal dodecahedron, are described repetitiously by 
compounding rational fraction elements of the tetrahedron and octahedron. These 
elements are known in synergetics as the A and B Quanta Modules. They each 
have a volume of l/24th of a tetrahedron. 

 911.00  Division of Tetrahedron 

 911.01  The regular tetrahedron may be divided volumetrically into four identical 
Quarter-Tetrahedra, with all their respective apexes at the center of volume of the 
regular unit tetrahedron. (See Illus. 913.01.) The Quarter-Tetrahedra are irregular 
pyramids formed upon each of the four triangular faces of the original unit 
tetrahedra, with their four interior apexes congruent at the regular tetrahedron's 
volumetric center; and they each have a volume of one quarter of the regular 
tetrahedron's volume-1. 
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 911.02  Any of the Quarter-Tetrahedra may be further uniformly subdivided into 
six identical irregular tetrahedra by describing lines that are perpendicular 
bisectors from each vertex to their opposite edge of the Quarter-Tetrahedron. The 
three perpendicular bisectors cut each Quarter-Tetrahedron into six similar 
tetrahedral pieces of pie. Each one of the six uniformly symmetrical components 
must be l/6th of One Quarter, which is l/24th of a regular tetrahedron, which is the 
volume and description of the A Quanta Module. (See Illus. 913.01B.) 

 912.00  Division of Octahedron 

 912.01  The regular octahedron has a volume equivalent to that of four unit 
tetrahedra. The octahedron may be subdivided symmetrically into eight equal 
parts, as Eighth-Octahedra, by planes going through the three axes connecting its 
six vertexes. (See Illus. 916.01.) 

 912.02  The Quarter-Tetrahedron and the Eighth-Octahedron each have an 
equilateral triangular base, and each of the base edges is identical in length. With 
their equiangular-triangle bases congruent we can superimpose the Eighth-
Octahedron over the Quarter-Tetrahedron because the volume of the Eighth-
Octahedron is l/2 and the volume of the Quarter-Tetrahedron is 1/4. The volume 
of the Eighth-Octahedron is twice that of the Quarter-Tetrahedron; therefore, the 
Eighth-Octahedron must have twice the altitude because it has the same base and 
its volume is twice as great. 

 913.00  A Quanta Module 

Fig. 913.01 

913.01  The A Quanta Module is l/6th of a Quarter-Tetrahedron. The six 
asymmetrical components of the Quarter-Tetrahedron each have a volume of 
l/24th of the unit tetrahedron. They are identical in volume and dimension, but 
three of them are positive and three of them are negative. (See Illus. 913.01.) 

 913.10  Positive and Negative: The positive and negative A Quanta Modules 
(the + and the -) will not nest in one another congruently despite identical angles, 
edges, and faces. The pluses are inside-out minuses, which can be shown by 
opening three of their six edges and folding the three triangles' hinged edges in the 
opposite direction until their edges come together again. 



Fig. 913.01 Division of the Quarter-Tetrahedron into Six Parts: A Quanta Module: 

A.  The regular tetrahedron is divided volumetrically into four identical quarters. 
B.  The quarter-tetrahedron is divided into six identical irregular tetrahedra, which appear as three right-hand and three left-

hand volumetric units each equal in volume to 1/24th of the original tetrahedron. This unit is called the A Module. 
C.  The plane net which will fold into either left or right A modules is shown. Vertex C is at the vertex of the regular 

tetrahedron. Vertex E is at the center of gravity of the tetrahedron. Vertex D is at the mid-edge of the tetrahedron. Vertex 
F is at the center of the tetrahedron face. Note that AD = FB, DE = EB, and AC = CF. 
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 913.11  The A Quanta Module triangle is possibly a unique scalene in that 
neither of its two perpendiculars bisect the edges that they intersect. It has three 
internal foldables and no "internally contained" triangle. It drops its 
perpendiculars in such a manner that there are only three external edge 
increments, which divide the perimeter into six increments of three pairs. 

 914.00  A Quanta Module: Foldability 

 914.01  The A Quanta Module can be unfolded into a planar triangle, an 
asymmetrical triangle with three different edge sizes, yet with the rare property of 
folding up into a whole irregular tetrahedron. 

 914.02  An equilateral planar triangle AAA may be bisected in each edge by 
points BBB. The triangle AAA may be folded on lines BB, BB, BB, and points A, 
A, A will coincide to form the regular tetrahedron. This is very well known. 

 914.10  Four Right Angles: In respect to the A Quanta Module flatout triangle 
or infolded to form the irregular tetrahedron, we find by the method of the 
module's construction (by perpendicular planes carving apart) that there are four 
right angles (see Illus. 913.01C): 

EFB EDC

EFC ADC

 914.20  Unfolding into a Flat Triangle: If we go to the vertex at E and break 
open the edges ED and AD, we can hinge open triangle EBF on hinge line EF. We 
can then break open the edge AC and fold triangle ADC, as well as folding out the 
two triangles DEC and CEF, which are connected by the hinge EC, so that now 
the whole asymmetric A Quanta Module is stretched out flat as a triangle. 

 914.21  The A Quanta Module unfolds into a scalene triangle; that is, all of its 
non- degree angles are different, and all are less than 90 degrees. Two of the folds 
are perpendicular to the triangle's sides, thus producing the four right angles. The 
A Quanta Module triangle may be the only triangle fulfilling all the above stated 
conditions. 



 914.30  Spiral Foldability: The foldability of the A Quanta Module planar 
triangle differs from the inter-mid-edge foldability of the equilateral or isosceles 
triangle. All the mid-edge-foldable equilateral or isosceles triangles can all form 
tetrahedra, regular or irregular. In the case of the folded equilateral or isosceles 
triangle, the three triangle corners meet together at one vertex: like petals of a 
flower. In the case of the inter-mid- edge-folding scalene triangle, the three 
corners fail to meet at one vertex to form a tetrahedron. 

 915.00  Twinkle Angle 

 915.01  The faces of an A Quanta Module unfold to form a triangle with 84° 44' 
(30° 00' + 35° 16' + 19° 28') as its largest angle. This is 5° 16' less than a right 
angle, and is known as the twinkle angle in synergetics (see Illus. 913.01C). 

 915.02  There is a unique 5° 16'-ness relationship of the A Quanta Module to the 
symmetry of the tetrahedron-octahedron allspace-filling complementation and 
other aspects of the vector equilibrium that is seemingly out of gear with the 
disequilibrious icosahedron. It has a plus-or-minus incrementation quality in 
relation to the angular laws common to the vector equilibrium. 

 915.10  A Quanta Module Triangle and Basic Disequilibrium 120 LCD 
Triangle: The angles of fold of the A Quanta Module triangle correspond in 
patterning to the angles of fold of the Basic Disequilibrium 120 LCD Triangle, the 
1/120th of a sphere whose fundamental great circles of basic symmetry subdivide 
it in the same way. The angles are the same proportionally when the spherical 
excess subsides proportionally in all three corners. For instance, the angle ACB in 
Illus. 913.01C is not 90 degrees, but a little less. 

 915.11  It is probable that these two closely akin triangles and their respective 
folded tetrahedra, whose A Module Quantum phase is a rational subdivider 
function of all the hierarchy of atomic triangulated substructuring, the 120 Basic 
Disequilibrium LCD triangles and the A Module triangles, are the same quanta 
reoccurrent in their most powerful wave-angle oscillating, intertransformable 
extremes. 

 915.20  Probability of Equimagnitude Phases: The 6° spherical excess of the 
Basic Disequilibrium 120 LCD Triangle, the 5° 16' "twinkle angle" of the A 
Quanta Module triangle, and the 7° 20' "unzipping angle" of birth, as in the DNA 
tetrahelix, together may in time disclose many equimagnitude phases occurring 
between complementary intertransforming structures. 

 916.00  B Quanta Module 



Fig. 916.01 

916.01  The B Quanta Module is 1/6th of the fractional unit described by 
subtracting a Quarter-Tetrahedron from an Eighth-Octahedron. The six 
asymmetrical components of the fractional unit so described each have a volume 
of 1/24th of the unit tetrahedron. They are identical in volume and dimensioning, 
but three of them are positive and three of them are negative. (See Illus. 916.01.) 

 916.02  When the Eighth-Octahedron is superimposed on the Quarter-
Tetrahedron, the top half of the Eighth-Octahedron is a fractional unit, like a 
concave lid, with a volume and weight equal to that of the Quarter-Tetrahedron 
below it. We can slice the fractional unit by three planes perpendicular to its 
equilateral triangular base and passing through the apex of the Quarter-
Tetrahedron, through the vertexes of the triangular base, and through the mid-
points of their respective opposite edges, separating it into six equidimensional, 
equivolume parts. These are B Quanta Modules. 

 916.03  B Quanta Modules are identical irregular tetrahedra that appear as three 
positive (outside-out) and three negative (outside-in) units. Each of the B Quanta 
Modules can be unfolded into a planar, multitriangled polygon. (See Illus. 
916.01F.) 

Next Section: 920.00 
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Fig. 916.01 Division of Eighth-Octahedron into Six Parts: B Quanta Module: The regular octahedron (A) is divided 
into eight identical units (B) equaling 1/8 of the volume of the octahedron. The quarter tetrahedron as defined by 
six A Modules (C) is subtracted from the 1/8-octahedron (D). This fractional unit is then subdivided into six 
identical irregular tetrahedra that appear as three right-hand and three left-hand units and are referred to as B 
Modules. They are equal in volume to the A Modules and are consequently also 1/24th of the regular tetrahedron. 
In (F) is shown the plane net which will fold into either the right or left B Module. Vertex A is at the vertex of the 
octahedron. Vertex C is at the mid-edge of the octahedron. Vertex E is at the center of gravity of the octahedron. 
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920.00  Functions of A and B Modules 

 920.01  The A and B Quanta Modules may possibly quantize our total 
experience. It is a phenomenal matter to discover asymmetrical polyhedral units 
of geometry that are reorientably compositable to occupy one asymmetrical 
polyhedral space; it is equally unique that, despite disparate asymmetric 
polyhedral form, both have the same volume; and both associate in different kinds 
of simplex and complex, symmetrical and asymmetrical, coherent systems. While 
they consist, in their positive and negative aspects, of four different asymmetrical 
shapes, their unit volume and energy quanta values provide a geometry 
elucidating both fundamental structuring and fundamental and complex 
intertransformings, both gravitational and radiational. 

 921.00  Energy Deployment in A and B Quanta Modules 

 921.01  By virtue of their properties as described in Secs. 920, 921.20 , and 
921.30 , the centers of energy in the A and B Quanta Modules can be locally 
reoriented within the same space without disturbing contiguously surrounding 
configurations of closest-packed geometry; these local reorientations can either 
concentrate and hold or deploy and distribute the energies of the respective A and 
B Quanta Modules, in the first case concentrating the centers of energy inwardly, 
and in the second case deploying the centers of energy outwardly. 

 921.02  In X-ray diffraction, you can see just such alternate energy 
concentrations of omnideployed patterns in successive heat treatments of metals. 
You can hit a piece of metal and you will find by X-ray diffraction that a 
previously concentrated array of centers of energy have been elegantly deployed. 
When you take the temper out of the metal, the energy centers will again change 
their positions. The metal's coherence strength is lessened as the energy centers 
are outwardly deployed into diffused remoteness from one another. When the 
centers of energy are arranged closer to one another, they either attract or repulse 
one another at the exponentially increasing rates of gravitational and radiational 
law. When we heat-treat or anneal metals and alloys, they transform in 
correspondence with the reorientabilities of the A and B Quanta Modules. 



 921.03  The identical volumes and the uniquely different energy-transforming 
capabilities of the A and B Quanta Modules and their mathematically describable 
behaviors (10F2 + 2) hint at correspondence with the behaviors of neutrons and 
protons. They are not mirror images of one another, yet, like the proton and 
neutron, they are energetically intertransformable and, due to difference of 
interpatternability, they have difference in mass relationship. Whether they tend to 
conserve or dissipate energy might impose a behavioral difference in the 
processes of measuring their respective masses. A behavioral proclivity must 
impose effects upon the measuring process. 

 921.04  The exact energy-volume relationship of the A and B Quanta Modules 
and their probable volumetric equivalence with the only meager dimensional 
transformations of the 120 LCD tetrahedral voids of the icosahedron (see Sec. 
905.60) may prove to have important physical behavior kinships. 

 921.10  Energy Behavior in Tetrahedra: A tetrahedron that can be folded out 
of a single foldable triangle has the strange property of holding energy in varying 
degrees. Energy will bounce around inside the tetrahedron's four internal triangles 
as we described its bouncing within one triangle (see Sec. 901). Many bounce 
patterns are cyclically accomplished without tendency to bounce out of 
tetrahedrons, whether regular or irregular, symmetrical or asymmetrical. 

 921.11  The equiangled, omni-sixty-degreed, regular tetrahedron can be opened 
along any three edges converging at any one of its vertexes with its edge-
separated vertexial group of three triangles appearing as a three-petaled flower 
bud about to open. By deliberately opening the three triangular petals, by rotating 
them outward from one another around their three unsevered base-edge hinges, all 
three may be laid out flat around the central base triangle to appear as a two-
frequency, edge-moduled, equiangular triangle consisting of four internal 
triangles. Energy tends by geodesical economy and angular law to be bounce-
confined by the tetrahedron. 

 921.12  The irregular, asymmetrical, tetrahedral A Quanta Module's four 
triangular facets unfold spirally into one asymmetrical triangle. 

 921.13  But the triangular facets of the B Quanta Module unfold inherently into 
four mutually dissimilar but interhinged 90-degree triangles. 



 921.14  All the interior edges of the triangles, like the edges of a triangular 
billiard table, will provide unique internal, bouncing, comer-pocket-seeking 
patterns. An equilateral, equiangled triangle will hold the bouncing with the least 
tendency to exit at the pocketed comers. The more asymmetrical the triangular 
billiard table, the more swiftly the angular progression to exit it at a comer pocket. 
The various bounce patterns prior to exit induce time-differentiated lags in the rate 
of energy release from one tetrahedron into the other tetrahedron. 

 921.15  Energy bounces around in triangles working toward the narrowest vertex, 
where the impossibility of more than one line going through any one point at any 
one time imposes a twist vertex exit at the comers of all polyhedra. Therefore, all 
triangles and tetrahedra "leak" energy, but when doing so between two similar 
corresponding vertexes- interconnected tetrahedra, the leaks from one become the 
filling of the other. 

 921.20  Energy Characteristics of A Quanta Module: The A Quanta Modules 
can hold energy and tend to conserve it. They do so by combining with one 
another in three unique ways, each of which combine as one regular tetrahedron; 
the regular tetrahedron being a fundamental energy-holding form-the energy 
being held bounce-describing the internal octahedron of every tetrahedron. 

 921.21  The A Quanta Modules can also combine with the B Quanta Modules in 
seven ways, each of which result in single whole tetrahedra, which, as noted, hold 
their energy within their inherent octahedral centers. 

 921.30  Energy Characteristics of B Quanta Module: The B Quanta Modules 
can vertex-combinedly hold energy but tend to release it. 

 921.31  While all the single triangles will hold swift-motion energies only for 
relatively short periods of time, the four very asymmetrical and dissimilar 
triangles of the B Quanta Module will release energy four times faster than any 
one of their asymmetrical tetrahedral kin. 

 921.32  The B Quanta Modules do not retain energy, and they cannot combine 
with one another to form a single tetrahedron with energy-introverting and -
conserving proclivities. 



 921.40  Summary: Though of equal energy potential or latent content, the As 
and the Bs are two different systems of unique energy-behavior containment. One 
is circumferentially embracing, energy-impounding, integratively finite, and 
nucleation- conserving. The other is definitively disintegrative and nuclearly 
exportive. A is outside- inwardly introvertive. B is outside-outwardly extrovertive. 
(See Illus. 924.20.) 

 922.00  Conceptual Description and Contrast 

 922.01  The A Quanta Module is all of the nonconsidered, nonconceptual, finite, 
equilibrious, not-now-tuned-in Universe. 

 922.02  The B Quanta Module is the only momentarily extant considered 
subdivision of disequilibrious Universe, i.e., the attention-preoccupying, special-
case local system. The B Quanta Module is always the real live "baby"; it is most 
asymmetrical. 

 923.00  Constant Volume 

Fig. 923.10  

923.10  Precession of Two Module Edges: There are six edges of a 
tetrahedron, and each edge precesses the opposite edge toward a 90-
degrees-maximum of attitudinal difference of orientation. Any two 
discrete, opposite edges can be represented by two aluminum tubes, X 
and Y (see Illus. 923.10D), which can move longitudinally anywhere 
along their respective axes while the volume of the irregular tetrahedra 
remains constant. They may shuttle along on these lines and produce all 
kinds of asymmetrical tetrahedra, whose volumes will always remain 
unit by virtue of their developed tetrahedra's constant base areas and 
identical altitudes. The two tubes' four ends produce the other four 
interconnecting edges of the tetrahedron, which vary as required 
without altering the constantly uniform volume. 



Fig. 923.10 Constant Volume of A and B Quanta Modules: 

A.  A comparison of the end views of the A and B Quanta Modules shows that they 
have equal volumes by virtue of the fact that they have equal base areas and 
identical altitudes. 

B.  It follows from this that if a line, originating at the center of area of the triangular 
base of a regular tetrahedron, is projected through the apex of the tetrahedron to 
infinity, is subdivided into equal Increments, it will give rise to additional 
Modules to infinity. Each additional Module will have the same volume as the 
original A or B Module, and as the incremental line approaches infinity the 
Modules will tend to become lines, but lines still having the same volume as the 
original A or B Module 

C.  End view shows Modules beyond the H Module shown in (B). 
D.  The two discrete members X and Y can move anywhere along their respective 

axes and the volume of the irregular tetrahedron remains constant. The other four 
edges vary as required. 
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 923.15  One Tetra Edge Constant: Using a constant-volume, vectorially edged 
tetrahedron ABCD with six edges AB, AC, AD, BC, BD, and CD, and with only 
one of those six edge lengths holding a constant length AB, all five of the 
tetrahedron's other edge lengths may covary as the tetrahedron rotates around the 
fixed edge length AB, which acts as an axis of rotation. While the axis AB is 
precessionally tilted within its celestial theater, it is experientially demonstrable 
that__without changing the tetrahedron's volume or its constant-length vector 
AB__its two other corners C and D may interconnect the AB-fixed-length-axis 
points with any other two points in Universe no matter how remote from one 
another. This is the reason why electromagnetic waves can interlink any points in 
Universe in response to a given constant wavelength AB. (Compare Secs. 426.40, 
530.11 , 960.08 , and 961.10-40.) 

 923.20  Constant Volume: A comparison of the end views of the A and B 
Quanta Modules shows that they have equal volumes as a result of their equal 
base areas and identical altitudes. (See Sec. 621.) 

 923.21  A line can be projected from its origin at the center of area of the 
triangular base of a regular tetrahedron, outward through the opposite apex of the 
tetrahedron to any desired distance. When subdivided into increments equal to the 
distance between its triangular-base center and its apex, and when each of these 
equilinear increments outward beyond the apex is interconnected by three lines 
leading to each of the three comers of the base triangle, then each of the 
successive volumetric additions will be of identical volume to that of the original 
tetrahedra, and the overall form will be that of a tetrahedron which become 
progressively longer and sharp-pointed with each addition. (See Illus. 923.10 A, 
B, and C.) As the ever-sharpening and elongating tetrahedron approaches infinity, 
the three elongating edges tend to parallelism; i.e., toward what is known as 
parallax in astronomy. The modules will tend to congruence with the parallaxing 
lines. Each full-line- long length model of these congruent lines will have the 
same volume as the original module. 
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 923.30  Energy Accommodation: The A and B Quanta Modules start with unit 
base and add unit altitude, C, D, E, F, and so forth, but as each additional altitude 
is superimposed, the volume remains the same: a volume of one. We find these 
linear incrementation assemblies getting longer, with their additional volumes 
always one. Suppose we think about this progression as forming an electric-wire 
conductor and divide its circular base into three 120-degree angles. Its progressive 
conic increments could grow and operate in the same manner as our constant-
volume, tetrahedral modules. 

 923.31  We will inherently superimpose progressive base-to-apex attenuating 
sections. In the electric conductor wire, this means that whatever energy 
increment is fed into the first base module will tend to be conducted at various 
unit frequencies along the line. Each unique frequency introduced at the base will 
create its unique conic altitude incrementation. The outermost, line-long cone's 
energy quantum will always be the same as that of the initial base cone. Finally, 
the last and outermost cone is just as long as the wire itself-so there is an outside 
charge on the wire tending to fluoresce a precessional broadcasting of the initial 
inputs at 90 degrees; i.e., perpendicularly away from the wire. This may elucidate 
antenna behaviors as well as long-distance, high-voltage, electric energy 
conductions which tend to broadcast their conducted energy. (For further 
elaboration of the constant-volume, tetrahedral models, see Secs. 961.10, 961.20, 
961.30 and 961.40.) 

 924.00  Congruence of Centers 

 924.10  Congruence of A and B Quanta Module Centers: Within either the A 
or B Quanta Modules the 

centers of effort; 
centers of energy; 
centers of gravity; 

centers of radiation; 
centers of volume; and 

centers of field 
are congruent, i.e., identical. The same centers are involved. We will call their six 
congruent centers their synergetic centers. 

 924.11  But the A (+) and A (-), and B (+) and B (-) respective volumetric centers 
are never congruent. However, the positive or the negative AAB aggregates (these 
are the "Mites." See Sec. 953.10) have identical volumetric centers. 



Table 924.20 

924.20  Table of Tetrahedral Functions of A and B Quanta Modules 

Next Section: 930.00 
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Table 924.20 Tetrahedral Functions of A and B Quanta Modules. 
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930.00  Tetrahelix: Unzipping Angle 

 930.10  Continuous Pattern Strip: "Come and Go" 

Fig. 930.11 

930.11  Exploring the multiramifications of spontaneously regenerative 
reangulations and triangulations, we introduce upon a continuous ribbon a 60-
degree-patterned, progressively alternating, angular bounce-off inwards from first 
one side and then the other side of the ribbon, which produces a wave pattern 
whose length is the interval along any one side between successive bounce-offs 
which, being at 60 degrees in this case, produces a series of equiangular triangles 
along the strip. As seen from one side, the equiangular triangles are alternately 
oriented as peak away, then base away, then peak away again, etc. This is the 
patterning of the only equilibrious, never realized, angular field state, in 
contradistinction to its sine-curve wave, periodic realizations of progressively 
accumulative, disequilibrious aberrations, whose peaks and valleys may also be 
patterned between the same length wave intervals along the sides of the ribbon as 
that of the equilibrious periodicity. (See Illus. 930.11.) 

 930.20  Pattern Strips Aggregate Wrapabilities: The equilibrious state's 60- 
degree rise-and-fall lines may also become successive cross-ribbon fold-lines, 
which, when successively partially folded, will produce alternatively a tetrahedral- 
or an octahedral- or an icosahedral-shaped spool or reel upon which to roll-mount 
itself repeatedly: the tetrahedral spool having four successive equiangular 
triangular facets around its equatorial girth, with no additional triangles at its polar 
extremities; while in the case of the octahedral reel, it wraps closed only six of the 
eight triangular facets of the octahedron, which six lie around the octahedron's 
equatorial girth with two additional triangles left unwrapped, one each 
triangularly surrounding each of its poles; while in the case of the icosahedron, the 
equiangle-triangulated and folded ribbon wraps up only 10 of the icosahedron's 20 
triangles, those 10 being the 10 that lie around the icosahedron's equatorial girth, 
leaving five triangles uncovered around each of its polar vertexes. (See Illus. 
930.20.) 

 930.21  The two uncovered triangles of the octahedron may be covered by 
wrapping only one more triangularly folded ribbon whose axis of wraparound is 
one of the XYZ symmetrical axes of the octahedron. 



Fig. 930.11: This continuous triangulation pattern strip is a 60 , angular, "come and go" alternation of very-high-frequency 
energy events of unit wavelength. This strip folded back on itself becomes a series of octahedra. The octahedra strips then 
combine to form a space-filling array of octahedra and tetrahedra, with all lines or vectors being of identical length and all the 
triangles equilateral and all the vertexes being omnidirectionally evenly spaced from one another. This is the pattern of "closest 
packing" of spheres. 
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Fig. 930.11b
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 930.22  Complete wrap-up of the two sets of five triangles occurring around each 
of the two polar zones of the icosahedron, after its equatorial zone triangles are 
completely enclosed by one ribbon-wrapping, can be accomplished by employing 
only two more such alternating, triangulated ribbon-wrappings . 

 930.23  The tetrahedron requires only one wrap-up ribbon; the octahedron two; 
and the icosahedron three, to cover all their respective numbers of triangular 
facets. Though all their faces are covered, there are, however, alternate and 
asymmetrically arrayed, open and closed edges of the tetra, octa, and icosa, to 
close all of which in an even-number of layers of ribbon coverage per each facet 
and per each edge of the three-and-only prime structural systems of Universe, 
requires three, triangulated, ribbon-strip wrappings for the tetrahedron; six for the 
octahedron; and nine for the icosahedron. 

 930.24  If each of the ribbon-strips used to wrap-up, completely and 
symmetrically, the tetra, octa, and icosa, consists of transparent tape; and those 
tapes have been divided by a set of equidistantly interspaced lines running parallel 
to the ribbon's edges; and three of these ribbons wrap the tetrahedron, six wrap the 
octahedron, and nine the icosahedron; then all the four equiangular triangular 
facets of the tetrahedron, eight of the octahedron, and 20 of the icosahedron, will 
be seen to be symmetrically subdivided into smaller equiangle triangles whose 
total number will be N2, the second power of the number of spaces between the 
ribbon's parallel lines. 

 930.25  All of the vertexes of the intercrossings of the three-, six-, nine-ribbons' 
internal parallel lines and edges identify the centers of spheres closest-packed into 
tetrahedra, octahedra, and icosahedra of a frequency corresponding to the number 
of parallel intervals of the ribbons. These numbers (as we know from Sec. 223.21) 
are: 

2F2 + 2 for the tetrahedron;

4F2 + 2 for the octahedron; and 

10F2 + 2 for the icosahedron (or vector equilibrium). 
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 930.26  Thus we learn sum-totally how a ribbon (band) wave, a waveband, can 
self- interfere periodically to produce in-shuntingly all the three prime structures 
of Universe and a complex isotropic vector matrix of successively shuttle-woven 
tetrahedra and octahedra. It also illustrates how energy may be wave-shuntingly 
self-knotted or self- interfered with (see Sec. 506), and their energies impounded 
in local, high-frequency systems which we misidentify as only-seemingly-static 
matter. 

 931.00  Chemical Bonds 

 931.10  Omnicongruence: When two or more systems are joined vertex to 
vertex, edge to edge, or in omnicongruence-in single, double, triple, or quadruple 
bonding, then the topological accounting must take cognizance of the congruent 
vectorial build in growth. (See Illus. 931.10.) 

 931.20  Single Bond: In a single-bonded or univalent aggregate, all the 
tetrahedra are joined to one another by only one vertex. The connection is like an 
electromagnetic universal joint or like a structural engineering pin joint; it can 
rotate in any direction around the joint. The mutability of behavior of single bonds 
elucidates the compressible and load-distributing behavior of gases. 

 931.30  Double Bond: If two vertexes of the tetrahedra touch one another, it is 
called double-bonding. The systems are joined like an engineering hinge; it can 
rotate only perpendicularly about an axis. Double-bonding characterizes the load-
distributing but noncompressible behavior of liquids. This is edge-bonding. 

 931.40  Triple Bond: When three vertexes come together, it is called a fixed 
bond, a three-point landing. It is like an engineering fixed joint; it is rigid. Triple-
bonding elucidates both the formational and continuing behaviors of crystalline 
substances. This also is face-bonding. 

 931.50  Quadruple Bond: When four vertexes are congruent, we have quadruple- 
bonded densification. The relationship is quadrivalent. Quadri-bond and mid-edge 
coordinate tetrahedron systems demonstrate the super-strengths of substances 
such as diamonds and metals. This is the way carbon suddenly becomes very 
dense, as in a diamond. This is multiple self-congruence. 

 931.51  The behavioral hierarchy of bondings is integrated four-dimensionally 
with the synergies of mass-interattractions and precession. 
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 931.60  Quadrivalence of Energy Structures Closer-Than-Sphere Packing: 
In 1885, van't Hoff showed that all organic chemical structuring is tetrahedrally 
configured and interaccounted in vertexial linkage. A constellation of tetrahedra 
linked together entirely by such single-bonded universal jointing uses lots of 
space, which is the openmost condition of flexibility and mutability characterizing 
the behavior of gases. The medium- packed condition of a double-bonded, hinged 
arrangement is still flexible, but sum-totally as an aggregate, allspace-filling 
complex is noncompressible__as are liquids. The closest- packing, triple-bonded, 
fixed-end arrangement corresponds with rigid-structure molecular compounds. 

 931.61  The closest-packing concept was developed in respect to spherical 
aggregates with the convex and concave octahedra and vector equilibria spaces 
between the spheres. Spherical closest packing overlooks a much closer packed 
condition of energy structures, which, however, had been comprehended by 
organic chemistry__that of quadrivalent and fourfold bonding, which corresponds 
to outright congruence of the octahedra or tetrahedra themselves. When carbon 
transforms from its soft, pressed-cake, carbon black powder (or charcoal) 
arrangement to its diamond arrangement, it converts from the so-called closest 
arrangement of triple bonding to quadrivalence. We call this self-congruence 
packing, as a single tetrahedron arrangement in contradistinction to closest 
packing as a neighboring-group arrangement of spheres. 

 931.62  Linus Pauling's X-ray diffraction analyses revealed that all metals are 
tetrahedrally organized in configurations interlinking the gravitational centers of 
the compounded atoms. It is characteristic of metals that an alloy is stronger when 
the different metals' unique, atomic, constellation symmetries have congruent 
centers of gravity, providing mid-edge, mid-face, and other coordinate, 
interspatial accommodation of the elements' various symmetric systems. 

 931.63  In omnitetrahedral structuring, a triple-bonded linear, tetrahedral array 
may coincide, probably significantly, with the DNA helix. The four unique quanta 
corners of the tetrahedron may explain DNA's unzipping dichotomy as well as__T-
A; G- C__patterning control of all reproductions of all biological species. 

 932.00  Viral Steerability 



 932.01  The four chemical compounds guanine, cytosine, thymine, and adenine, 
whose first letters are GCTA, and of which DNA always consists in various 
paired code pattern sequences, such as GC, GC, CG, AT, TA, GC, in which A and 
T are always paired as are G and C. The pattern controls effected by DNA in all 
biological structures can be demonstrated by equivalent variations of the four 
individually unique spherical radii of two unique pairs of spheres which may be 
centered in any variation of series that will result in the viral steerability of the 
shaping of the DNA tetrahelix prototypes. (See Sec. 1050.00 et. seq.) 

 932.02  One of the main characteristics of DNA is that we have in its helix a 
structural patterning instruction, all four-dimensional patterning being controlled 
only by frequency and angle modulatability. The coding of the four principal 
chemical compounds, GCTA, contains all the instructions for the designing of all 
the patterns known to biological life. These four letters govern the coding of the 
life structures. With new life, there is a parent-child code controls unzipping. 
There is a dichotomy and the new life breaks off from the old with a perfect 
imprint and control, wherewith in turn to produce and design others. 

 933.00  Tetrahelix 

Fig. 933.01 

933.01  The tetrahelix is a helical array of triple-bonded tetrahedra. (See Illus. 
933.01) We have a column of tetrahedra with straight edges, but when face-
bonded to one another, and the tetrahedra's edges are interconnected, they 
altogether form a hyperbolic-parabolic, helical column. The column spirals 
around to make the helix, and it takes just ten tetrahedra to complete one cycle of 
the helix. 

 933.02  This tetrahelix column can be equiangle-triangular, triple-ribbon-wave 
produced as in the methodology of Secs. 930.10 and 930.20 by taking a ribbon 
three- panels wide instead of one-panel wide as in Sec. 930.10. With this triple 
panel folded along both of its interior lines running parallel to the three-band-wide 
ribbon's outer edges, and with each of the three bands interiorly scribed and folded 
on the lines of the equiangle-triangular wave pattern, it will be found that what 
might at first seem to promise to be a straight, prismatic, three-edged, triangular-
based column__upon matching the next-nearest above, wave interval, outer edges 
of the three panels together (and taping them together)__will form the same 
tetrahelix column as that which is produced by taking separate equiedged 
tetrahedra and face-bonding them together. There is no distinguishable difference, 
as shown in the illustration. 
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Fig. 933.01: These helical columns of tetrahedra, which we call the tetrahelix, explain 
the structuring of DNA models of the control of the fundamental patterning of nature's 
biological structuring as contained within the virus nucleus. It takes just 10 triple-
bonded tetrahedra to make a helix cycle, which is a molecular compounding 
characteristic also of the Watson-Crick model of the DNA. When we address two or 
more positive (or two or more negative) tetrahelixes together, they nestle their angling 
forms into one another. When so nestled the tetrahedra are grouped in local clusters of 
five tetrahedra around a transverse axis in the tetrahelix nestling columns. Because the 
dihedral angles of five tetrahedra are 7° 20' short of 360°, this 7° 20' is sprung-closed by 
the helix structure's spring contraction. This backed-up spring tries constantly to unzip 
one nestling tetrahedron from the other, or others, of which it is a true replica. These are 
direct (theoretical) explanations of otherwise as yet unexplained behavior of the DNA. 
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 933.03  The tetrahelix column may be made positive (like the right-hand-
threaded screw) or negative (like the left-hand-threaded screw) by matching the 
next-nearest-below wave interval of the triple-band, triangular wave's outer edges 
together, or by starting the triple-bonding of separate tetrahedra by bonding in the 
only alternate manner provided by the two possible triangular faces of the first 
tetrahedron furthest away from the starting edge; for such columns always start 
and end with a tetrahedron's edge and not with its face. 

 933.04  Such tetrahelical columns may be made with regular or irregular 
tetrahedral components because the sum of the angles of a tetrahedron's face will 
always be 720 degrees, whether regular or asymmetric. If we employed 
asymmetric tetrahedra they would have six different edge lengths, as would be the 
case if we had four different diametric balls__G, C, T, A__and we paired them 
tangentially, G with C, and T with A, and we then nested them together (as in Sec. 
623.12), and by continuing the columns in any different combinations of these 
pairs we would be able to modulate the rate of angular changes to design 
approximately any form. 

 933.05  This synergetics' tetrahelix is capable of demonstrating the molecular- 
compounding characteristic of the Watson-Crick model of the DNA, that of the 
deoxyribonucleic acid. When Drs. Watson, Wilkins, and Crick made their famous 
model of the DNA, they made a chemist's reconstruct from the information they 
were receiving, but not as a microscopic photograph taken through a camera. It 
was simply a schematic reconstruction of the data they were receiving regarding 
the relevant chemical associating and the disassociating. They found that a helix 
was developing. 

 933.06  They found there were 36 rotational degrees of arc accomplished by each 
increment of the helix and the 36 degrees aggregated as 10 arc increments in 
every complete helical cycle of 360 degrees. Although there has been no 
identification of the tetrahelix column of synergetics with the Watson-Crick 
model, the numbers of the increments are the same. Other molecular biologists 
also have found a correspondence of the tetrahelix with the structure used by 
some of the humans' muscle fibers. 

 933.07  When we address two or more positive or two or more negative 
tetrahelixes together, the positives nestle their angling forms into one another, as 
the negatives nestle likewise into one another's forms. 
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 933.08  Closest Packing of Different-sized Balls: It could be that the CCTA 
tetrahelix derives from the closest packing of different-sized balls. The Mites and 
Sytes (see Sec. 953) could be the tetrahedra of the GCTA because they are both 
positive- negative and allspace filling. 

Next Section: 934.00 
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 934.00  Unzipping Angle 

 934.01  If we take three columns of tetrahelixes and nest them into one another, 
we see that they also apparently internest neatly as with a three-part rope twist; 
but upon pressing them together to close the last narrow gap between them we 
discover that they are stubbornly resisting the final closure because the core 
pattern they make is one in which five tetrahedra are triple-bonded around a 
common edge axis__which angular gap is impossible to close. 

Fig. 934.02 

934.02  Five tetrahedra triple-bonded to one another around a common edge axis 
leave an angular sinus2 of 7° 20' as the birth unzipping angle of DNA-RNA 
behaviors. This gap could be shared 10 ways, i.e., by two faces each of the five 
circle-closing tetrahedra, and only 44 minutes of circular arc per each tetra face, 
each of whose two faces might be only alternatingly edge-bonded, or hinged, to 
the next, which almost- closed, face-toward-face, hinge condition would 
mechanically accommodate the spanned coherence of this humanly-invisible, 44-
minutes-of-circular-arc, distance of interadherence. Making such a tetrahelix 
column could be exactly accomplished by only hinging one edge of each 
tetrahedron to the next, always making the next hinge with one of the two-out-of-
three edges not employed in the previous hinge. Whatever the method of 
interlinkage, this birth dichotomy is apparently both accommodated by and 
caused by this invisible, molecular biologist's 1° 28' per tetra and 7° 20' per 
helical-cycle hinge opening. 

(Footnote 2: Sinus means hollow or without in Latin.) 

 934.03  Unzipping occurs as the birth dichotomy and the new life breaks off from 
the old pattern with a perfect imprint and repeats the other's growth pattern. These 
helixes have the ability to nest by virtue of the hinge-spring linkage by which one 
is being imprinted on the other. Positive columns nest with and imprint only upon 
positive helix columns and negative helix columns nest with and imprint their 
code pattern only with and upon negative helix columns. Therefore, when a 
column comes off, i.e., unzips, it is a replica of the original column. 



Fig. 934.02. 
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 934.04  We know that the edge angle of a tetrahedron is 70° 32', and five times 
that is 352° 40', which is 7° 20' less than 360°. In other words, five tetrahedra 
around a common edge axis do not close up and make 360 degrees, because the 
dihedral angles are 7° 20' short. But when they are brought together in a 
helix__due to the fact that a hinged helix is a coil spring__the columns will twist 
enough to permit the progressive gaps to be closed. No matter how long the 
tetrahelix columns are, their sets of coil springs will contract enough to bring them 
together. The backed-up spring tries constantly to unzip one nesting tetrahedron 
from the others of which it is a true replica. These are only synergetical 
conjectures as to the theoretical explanations of otherwise as yet unexplained 
behaviors of the DNA. 

935.00  Octahedron as Conservation and Annihilation Model 

[935.00-938.16 Annihilation Scenario] 

 935.10  Energy Flow and Discontinuity 

 935.11  Though classic science at the opening of the 18th century had achieved 
many remarkably accurate observations and calculations regarding the behaviors 
of light, individual scientists and their formal societies__with one notable 
exception-remained unaware that light (and radiation in general) has a speed. Ole 
Roemer (1644__1710), both Royal Astronomer and Royal Mathematician of 
Denmark, was that exception. Roemer's observations of the reflected light of the 
revolving moons of the planet Jupiter made him surmise that light has a speed. 
His calculations from the observed data very closely approximated the figure for 
that speed as meticulously measured in vacuo two centuries later, in the 
Michelson-Morley experiment of 1887. Though Roemer was well accredited by 
the scientists and scientific societies of Europe, this hypothesis of his seemed to 
escape their cosmological considerations. Being overlooked, the concept did not 
enter into any of the cosmological formulations (either academic or general) of 
humanity until the 20th century. 



 935.12  Until the 20th century scientists in general assumed the light of all the 
stars to be instantaneously and simultaneously extant. Universe was an 
instantaneous and simultaneous system. The mid-19th-century development of 
thermodynamics, and in particular its second law, introduced the concept that all 
systems always lose energy and do so in ever-increasingly disorderly and 
expansive ways. The academicians spontaneously interpreted the instantaneity 
and simultaneity of Universe as requiring that the Universe too must be 
categorized as a system; the academicians assumed that as a system Universe 
itself must be losing energy in increasingly expansive and disorderly ways. Any 
expenditure of energy by humans on Earth__to whom the stars in the heavens 
were just so much romantic scenery; no more, no less__would hasten the end of 
the Universe. This concept was the foundation of classical 
conservatism__economic, political, and philosophical. Those who "spent" energy 
were abhorred. 

 935.13  This viewpoint was fortified by the hundred-years-earlier concept of 
classical science's giant, Isaac Newton, who in his first law of motion stated that 
all bodies persist in a state of rest, or in a line of motion, except as affected by 
other bodies. This law posits a cosmic norm of at rest: change is abnormal. This 
viewpoint as yet persists in all the graphic-chart coordinates used by society today 
for plotting performance magnitudes against a time background wherein the 
baseline of "no change" is the norm. Change is taken spontaneously as being 
inherently abnormal and is as yet interpreted by many as being cause for 
fundamental social concern. 

 935.14  With the accurate measurement, in 1887, of the speed of light in vacuo, 
science had comprehensively new, experimentally redemonstrable challenges to 
its cosmogony and cosmology. Inspired by the combined discoveries of the 
Brownian movement, black body radiation, and the photon of light, Einstein, 
Planck, and others recognized that energy-as-radiation has a top speed__ergo, is 
finitely terminaled__but among them, Einstein seems to have convinced himself 
that his own cosmological deliberations should assume Boltzmann's concept to be 
valid__ergo, always to be included in his own exploratory thoughts. There being 
no experimental evidence of energy ever being created or lost, universal energy is 
apparently conserved. Wherefore Boltzmann had hypothesized that energy 
progressively and broadcastingly exported from various localities in Universe 
must be progressively imported and reassembled at other localities in Universe. 



 935.15  Boltzmann's concept was analogous to that upon which was developed 
the theory and practice of the 20th-century meteorological weather forecasting, 
which recognizes that our terrestrial atmosphere's plurality of high-pressure areas 
are being progressively exhausted at different rates by a plurality of neighboring 
low-pressure areas, which accumulate atmospheric molecules and energy until 
they in turn become new high- pressure areas, which are next to be progressively 
exhausted by other newly initiated low- pressure areas. The interpatterning of the 
various importing-exporting centers always changes kaleidoscopically because of 
varying speeds of moisture formation or precipitation, speeds and directions of 
travel, and local thermal conditions. 

 935.16  Though they did not say it that way, the 20th-century leaders of scientific 
thinking inferred that physical Universe is apparently eternally regenerative. 

 935.17  Einstein assumed hypothetically that energies given off 
omnidirectionally with the ever-increasing disorder of entropy by all the stars 
were being antientropically imported, sorted, and accumulated in various other 
elsewheres. He showed that when radiant energy interferes with itself, it can, and 
probably does, tie itself precessionally into local and orderly knots. Einstein must 
have noted that on Earth children do not disintegrate entropically but multiply 
their hydrocarbon molecules in an orderly fashion; little saplings grow in an 
orderly way to become big trees. Einstein assumed Earthian biology to be reverse 
entropy. (This account does not presume to recapitulate the actual thought 
processes of Einstein at any given point in the development of his philosophy; 
rather it attempts to illustrate some of the inevitable conclusions that derive from 
his premises.) 

 935.18  What made it difficult for scientists, cosmologists, and cosmogonists to 
comprehend about Boltzmann's concept__or Einstein's implicit espousal of it__was 
the inherent discontinuity of energy events implicit in the photon as a closed-
system package of energy. What happened to the energy when it disappeared? For 
disappear it did. How could it reappear elsewhere in a discontinuous system? 

 935.20  Precessional Transformation in Quantum Model 



 935.21  One quantum of energy always consists of six energy vectors, each being 
a combined push-pull, positive-negative force. (See Secs. 600.02 through 612.01 
and Fig. 620.06.) Twelve unique forces: six plus and six minus. Six vectors break 
into two sets of three each. Classical engineers assumed that each action had its 
equal and opposite reaction at 180 degrees; but since the discovery of the speed of 
light and the understanding of nonsimultaneity, we find that every action has not 
only a reaction but also a resultant. Neither the reaction nor the resultant are 
angularly "opposite" in 180- degree azimuth from the direction of action. The 
"equal and opposite" of classical engineering meant that both action and reaction 
occurred in opposite directions in the same straight line in the same geometrical 
plane. But since the recognition of nonsimultaneity and the speed of light, it has 
been seen that action, reaction, and resultant vectors react omnidirectionally and 
precessionally at angles other than 180 degrees. (See Fig. 511.20.) 

 935.22  As we enter the last quarter of the 20th century, it is recognized in 
quantum mechanics and astrophysics that there could never have existed the 
traditionally assumed, a priori universal chaos, a chaos from which it was also 
assumed that Universe had escaped only by the workings of chance and the long-
odds-against mathematical probability of a sequence of myriad-illions of 
coincidences, which altogether produced a universal complex of orderly 
evolutionary events. This nonsense was forsaken by the astrophysicists only a 
score of years ago, and only because science has learned in the last few decades 
that both the proton and the neutron always and only coexist in a most orderly 
interrelationship. They do not have the same mass, and yet the one can be 
transformed into the other by employing both of their respective two energy side 
effects; i.e., those of both the proton and the neutron. Both the proton and the 
neutron have their respective and unique two-angle-forming patterns of three 
interlinked lines, each representing their action, reaction, and resultant vectors. 

 935.221  Coming-Apart Phase: Coming-Apart Limit: The astrophysicists say 
that no matter how far things come apart, fundamentally they never come farther 
apart than proton and neutron, which always and only coexist. 
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Fig. 935.23 

935.23  The names of the players, the positions they play, and the identifying 
letters they wear on the three-vector teams of proton and neutron, respectively, 
are identified as follows. The proton's three-vector team consists of 

1.  the action vector, played by its captain, the proton, wearing the letters BD; 
2.  the reaction vector, played by the electron, wearing the letters AD; and 
3.  the resultant vector, played by the antineutrino, wearing the letters BC. 

The neutron's three-vector team consists of 

1.  the action vector, played by its captain, the neutron, wearing the letters A 
C; 

2.  the reaction vector, played by the positron, wearing the letters CD; and 
3.  the resultant vector, played by the neutrino, wearing the letters AB. 

Either one of these two teams of three-vector events is identified in quantum 
mechanics as being a half-quantum (or one-half spin or one-half Planck's 
constant). When two half- quanta associate, they produce one unit of quantum. 
(See Sec. 240.65.) These two sets of three vectors each combine to produce the 
six vector edges of the tetrahedron, which is the minimum structural system of 
Universe: one quantum of energy thus becomes structurally and systematically 
conceptual. (See Fig. 935.23.) One quantum of energy equals one tetrahedron. 
Humanist writers and broadcasters take notice that science has regained 
conceptuality. Science's intertransformabilities and intercomplementarities are 
modelably demonstrable. The century-long chasm that has separated science and 
the humanities has vanished. 
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Fig. 935.23 Proton and Neutron Three-vector Teams: The proton and neutron always 
and only coexist as action vectors of half-quanta associable as quantum. 
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 935.24  The tetrahedral model of the quantum as the minimum structural system 
of Universe is a prime component in producing the conceptual bridge to span the 
vast chasm identified by C. P. Snow as having for so long existed between the one 
percent of the world people who are scientists and the 99 percent of humanity 
comprehendingly communicated with by the writers in literature and the 
humanities. This chasm has been inadvertently sustained by the use of an 
exclusively mathematical language of abstract equations on the part of scientists, 
thus utterly frustrating the comprehension of the scientists' work by the 99 percent 
of humanity that does not communicate mathematically. This book, Synergetics, 
contains the conceptualizing adequate to the chasm-bridging task, and it does so 
in vectorially structured geometry and in exclusively low-order prime numbers in 
rational whole-number accounting. 

 935.25  As an instance of chasm-spanning between science and the humanities 
by conceptually transformative energy-quanta accounting, synergetics 
conceptually elucidates the Boltzmann import-export, entropy-syntropy 
transaction and the elegant manner in which nature accommodates the "hidden 
ball" play of now-you-see-it-now-you-don't energy transference. 

Next Scetion: 936.00 
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 936.00  Volumetric Variability with Topological Constancy 

 936.10  Symmetrical and Asymmetrical Contraction 

 936.11  An octahedron consists of 12 vector edges and two units of quantum and 
has a volume of four when the tetrahedron is taken as unity. (See Table 223.64.) 
Pulling two ends of a rope in opposite directions makes the rope's girth contract 
precessionally in a plane at 90 degrees to the axis of purposeful tensing. (Sec. 
1054.61.) Or if we push together the opposite sides of a gelatinous mass or a 
pneumatic pillow, the gelatinous mass or the pneumatic pillow swells tensively 
outward in a plane at 90 degrees to the line of our purposeful compressing. This 
90-degree reaction__or resultant__is characteristic of precession. Precession is the 
effect of bodies in motion upon other bodies in motion. The gravitational pull of 
the Sun on the Earth makes the Earth go around the Sun in an orbit at degrees to 
the line of the Earth-Sun gravitational interattraction. The effect of the Earth on 
the Moon or of the nucleus of the atom upon its electron is to make these 
interattractively dependent bodies travel in orbits at 90 degrees to their mass- 
interattraction force lines. 

Fig. 936.12 

936.12  The octahedron represents the most commonly occurring 
crystallographic conformation in nature. (See Figs. 931.10 and 1054.40.) It is the 
most typical association of energy-as-matter; it is at the heart of such association. 
Any focused emphasis in the gravitational pull of the rest of the Universe upon 
the octahedron's symmetry precesses it into asymmetrical deformation in a plane 
at 90 degrees to the axis of exaggerated pulling. This forces one of the 12 edge 
vectors of the octahedron to rotate at 90 degrees. If we think of the octahedron's 
three XYZ axes and its six vertexes, oriented in such a manner that X is the north 
pole and X' is the south pole, the other four vertexes__Y, Z, Y', Z'__all occur in 
the plane of, and define, the octahedron's equator. The effect of gravitational pull 
upon the octahedron will make one of the four equatorial vectors disengage from 
its two adjacent equatorial vertexes, thereafter to rotate 90 degrees and then rejoin 
its two ends with the north pole and south pole vertexes. (See Fig. 936.12 and 
color plate 6.) 
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Fig. 936.12 Octahedron as Conservation and Annihilation Model: If we think of the 
octahedron as defined by the interconnections of six closest-packed spheres, 
gravitational pull can make one of the four equatorial vectors disengage from its two 
adjacent equatorial vertexes to rotate 90 degrees and rejoin the north and south vertexes 
in the transformation completed as at I. (See color plate 6.) 
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 936.13  When this precessional transformation is complete, we have the same 
topological inventories of six vertexes, eight exterior triangular faces, and 12 
vector edges as we had before in the symmetrical octahedron; but in the process 
the symmetrical, four- tetrahedra-quanta-volume octahedron has been transformed 
into three tetrahedra (three- quanta volume) arranged in an arc section of an 
electromagnetic wave conformation with each of the two end tetrahedra being 
face bonded to the center tetrahedron. (See Sec. 982.73) 

 936.14  The precessional effect has been to rearrange the energy vectors 
themselves in such a way that we have gone from the volume-four quanta of the 
symmetrical octahedron to the volume-three quanta of the asymmetric tetra-arc-
array segment of an electromagnetic wave pattern. Symmetric matter has been 
entropically transformed into asymmetrical and directionally focused radiation: 
one quantum of energy has seemingly disappeared. When the radiation impinges 
interferingly with any other energy event in Universe, precession recurs and the 
three-quantum electromagnetic wave retransforms syntropically into the four-
quantum octahedron of energy-as-matter. And vice versa. Q.E.D. (See Fig. 
936.14.) 

 936.15  The octahedron goes from a volume of four to a volume of three as one 
tensor is precessed at 90 degrees. This is a demonstration in terms of tension and 
compression of how energy can disappear and reappear. The process is reversible, 
like Boltzmann's law and like the operation of syntropy and entropy. The lost 
tetrahedron can reappear and become symmetrical in its optimum form as a ball-
bearing-sphere octahedron. There are six great circles doubled up in the 
octahedron. Compression is radiational: it reappears. Out of the fundamental 
fourness of all systems we have a model of how four can become three in the 
octahedron conservation and annihilation model. 

Fig. 936.16 

936.16  See the Iceland spar crystals for the octahedron's double vector-edge 
image. 

 936.17  The interior volume of the concave-vector-equilibrium-shaped space 
occurring interiorly between the six uniradius octahedral collection of closest-
packed spheres is greater than is the concave-octahedrally-shaped space occurring 
interiorly between the four uniradius tetrahedral collection of closest-packed 
spheres, which tetrahedral collection constitutes the minimum structural system in 
Universe, and its interior space is the minimum interior space producible within 
the interstices of closest- packed uniradius spheres. 



Fig. 936.16 Iceland Spar Crystal: Double vector image. 
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 936.18  Thus the larger interior space within the omnitriangularly stable, six-
vertex- ball, 12-vector-edge octahedron is subject to volumetric compressibility. 
Because its interior space is not minimal, as the octahedron is omniembracingly 
tensed gravitationally between any two or more bodies, its six balls will tend 
precessionally to yield transformingly to produce three closest-packed, uniradius, 
sphere-vertex-defined, face- bonded tetrahedra. 

Fig. 936.19 

936.19  As we tense the octahedron, it strains until one vector (actually a double, 
or unity-as-two, vector) yields its end bondings and precesses at 90 degrees to 
transform the system into three double-bonded (face-bonded) tetrahedra in linear 
arc form. This tetra- arc, embryonic, electromagnetic wave is in neutral phase. 
The seemingly annihilated__but in fact only separated-out-quantum is now 
invisible because vectorless. It now becomes invisibly face-bonded as one 
invisible tetrahedron. The separated-out quantum is face- bonded to one of the 
furthermost outward triangular faces occurring at either end of the tetra-arc array 
of three (consisting of one tetra at the middle with each of the two adjacent tetra 
face-bonded to it); the fourth invisible tetrahedron is face-bonded to one or the 
other of the two alternatively vacant, alternatively available furthermost end faces 
of the tetra- arc group. With this fourth, invisible tetrahedral addition the overall 
triple-bonded tetrahedral array becomes either rightwardly or leftwardly spiraled 
to produce a four- tetrahedron tetrahelix, which is a potential, event embryo, 
electromagnetic-circuitry gap closer. Transmission may thereafter be activated as 
a connected chain of the inherently four-membered, individual-link continuity. 
This may explain the dilemma of the wave vs the particle. (See Sec. 973.30, Fig. 
936.19, and color plates 6 and 7.) 

 936.20  Conceptual Conservation and Annihilation 

 936.21  The octahedron as the conservation and annihilation model provides an 
experiential and conceptual accounting for the question: What happens to 
entropically vanishing quanta of energy that have never been identified as 
discretely lost when new quanta appeared elsewhere and elsewhen? Were these 
appearing and disappearing quanta being encountered for the first time as we 
became capable of penetrating exploration of ever vaster ranges of Universe? 



Fig. 936.19 Tetrahedral Quantum is Lost and Reappears in Transformation between 
Octahedron and Three-tetra-arc Tetrahelix: This transformation has the precessional 
effect of rearranging the energy vectors from 4-tetravolumes to 3-tetravolumes and 
reverse. The neutral symmetric octahedron rearranges itself into an asymmetric 
embryonic wave pattern. The four-membered individual-link continuity is a potential 
electromagnetic-circuitry gap closer. The furthermost ends of the tetra-arc group are 
alternatively vacant. (See also color plate 6.) 
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 936.22  Boltzmann hypothesized and Einstein supported his working 
assumption__stated in the conceptual language of synergetics__that there can be 
no a priori stars to radiate entropically and visibly to the information-importing, 
naked eyes of Earthian humans (or to telescopes or phototelescopy or 
electromagnetic antennae) if there were not also invisible cosmic importing 
centers. The importing centers are invisible because they are not radiantly 
exporting; they are in varying stages of progressive retrieving, accumulating, 
sorting, storing, and compressing energies. The cosmic abundance of the myriads 
of such importing centers and their cosmic disposition in Scenario Universe 
exactly balances and conserves the integrity of eternally regenerative Universe. 

 936.23  In Scenario Universe (in contrast to a spherically-structured, normally-at- 
rest, celestially-concentric, single-frame-picture Universe) the episodes consist 
only of such frequencies as are tune-in-able by the limited-frequency-range set of 
the viewer. 

 936.24  There is no such phenomenon as space: there is only the at-present-tuned-
in set of relationships and the untuned intervalling. Points are twilight-border-line, 
only amplitude-tuned-in (AM), directionally oriented, static squeaks or pips that, 
when frequency-tuned (FM), become differentially discrete and conceptually 
resolvable as topological systems having withinness and withoutness__ergo, at 
minimum having four corner-defining yet subtunable system pips or point-to-able 
corner loci. In systemic cosmic topology Euler's vertexes (points) are then always 
only twilight energy-event loci whose discrete frequencies are untunable at the 
frequency range of the reception set of the observer. 

 937.00  Geometry and Number Share the Same Model 

 937.10  Midway Between Limits 

 937.11  The grand strategy of quantum mechanics may be described as 
progressive, numerically rational fractionating of the limit of total energy 
involved in eternally regenerative Universe. 

 937.12  When seeking a model for energy quanta conservation and annihilation, 
we are not surprised to find it in the middle ranges of the geometrical hierarchy of 
prime structural systems__tetrahedron, octahedron, and icosahedron (see Sec. 
610.20). The tetrahedron and icosahedron are the two extreme and opposite limit 
cases of symmetrical structural systems: they are the minimum-maximum cosmic 
limits of such prime structures of Universe. The octahedron ranks in the neutral 
area, midway between the extremes. 
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 937.13  The prime number characteristic of the tetrahedron is 1; the prime 
number characteristic of the icosahedron is 5. Both of these prime numbers__1 and 
5__are odd numbers, in contradistinction to the prime number characteristic of the 
middle-case structural-system octahedron, which is 2, an even number and the 
only even numbered prime number. Again, we are not surprised to find that the 
octahedron is the most common crystal conformation in nature. 

 937.14  The tetrahedron has three triangles around each vertex; the octahedron 
has four; and the icosahedron has five. The extreme-limit cases of structural 
systems are vertexially locked by odd numbers of triangular gears, while the 
vertexes of the octahedron at the middle range have an even number of 
reciprocating triangular gears. This shows that the octahedron's three great circles 
are congruent pairs__i.e., six circles that may seem to appear as only three, which 
quadrivalent doubling with itself is clearly shown in the jitterbug model, where 
the 24 vector edges double up at the octahedron phase to produce 12 double-
congruent vector edges and thus two congruent octahedra. (See Fig. 460.08D.) 

 937.15  The octahedron is doubled-up in the middle range of the vector 
equilibrium's jitterbug model; thus it demonstrates conceptually the exact middle 
between the macro- micro limits of the sequence of intertransformative events. 
The octahedron in the middle of the structural-system hierarchy provides us with a 
clear demonstration of how a unit quantum of energy seemingly disappears__i.e., 
becomes annihilated__and vice versa. 

Fig. 937.20 

937.20  Doubleness of Octahedron 
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Fig. 937.20 Six-great-circle Spherical Octahedron: The doubleness of the octahedron is 
illustrated by the need for two sets of three great circles to produce its spherical foldable 
form. 
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 937.21  The octahedron always exhibits the quality of doubleness. When the 
octahedron first appears in the symmetrical contraction of the vector equilibrium 
jitterbug system, it appears with all of its vectors doubled (see Fig. 460.08D 
460.08D). It also takes two sets of three great circles each to fold the octahedron. 
You might think you could do it with one set of three great circles, but the 
foldability of the octahedron requires two sets of three great circles each. (See 
Secs. 835 and 836.) There are always six great circles doubled up in the 
octahedron to reappear only as three. (See Fig. 937.20.) 

 937.22  And we also recall that the octahedron appears as the prime number 2 in 
the geometrical hierarchy, while its volume is 4 when the tetrahedron is taken as 
volumetric units (see Table 223.64). 

The tetrahedron's prime number identity is 1

The octahedron's prime number identity is 2

Both cubes and rhombic dodecahedra are 3 

And icosahedra and vector equilibria are 5 

They first occur volumetrically, respectively, as 
1, 4, 3, 6, 18.51, and 20. 

 937.30  Octahedron as Sphere of Compression 

 937.31  The slenderness ratio in gravitationally tensed functioning has no 
minimum overall limit of its structural-system length, as compared to the diameter 
of the system's midlength cross section; ergo, 

tensile length
-----------
diameter

=
alpha
------

0

In crystalline compression structures the column length minimum limit ratio is 
40/1. There may be a length/diameter compression-system-limit in hydraulics, but 
we do not as yet know what it is. The far more slender column/diameter ratio 
attainable with hydraulics permits the growth of a palm tree to approach the 
column/diameter ratio of steel columns. We recognize the sphere__the ball 
bearing, the spherical island__ column/diameter = 1/1 constituting the optimal, 
crystalline, compressive-continuity, structural-system model. (See Fig. 641.01.) 
The octahedron may be considered to be the optimum crystalline structural 
representation of the spherical islands of compression because it is double-bonded 
and its vectors are doubled. 
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Next Section: 938.00 
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